Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of Ti-Cu-Based Materials Produced by Using Reactive Melt Infiltration and Liquid Phase Sintering Techniques

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the present study, Ti-Cu-based alloys were provided by the simultaneous application of both reactive melt infiltration and liquid phase sintering techniques. In order to apply the reactive melt infiltration technique, stearic acid was added at 10, 15, and 20% by weight as the pore forming agent in titanium. Cold-pressed samples were subjected to two different sintering temperatures (1100 and 1200 °C), and melt copper was provided to leak between the titanium particles, natural pores, and the pores forming upon the vaporization of stearic acid. According to the microstructure results, two types of microstructure (eutectoid and hypereutectoid) formed. Eutectoid structure consists of formation of α-Ti + Ti2Cu. The presence of Ti2Cu intermetallic phase caused an increase in hardness. While the increase in the sintering temperature increased transverse rupture strength, the increased amount of copper caused a decrease due to pore formation (natural pores and pores produced). According to the morphology of the surface of fracture, brittle transgranular and partially ductile fractures occurred in the samples. In summary, it was found that 20% Cu amount and 1200 °C were the most suitable in terms of hardness and relative density, while pure titanium had the highest TRS value at 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Figure 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, T. Okabe, Mechanical properties and microstructures of cast Ti-Cu alloys. Dent. Mater. 19, 174–181 (2003). https://doi.org/10.1016/S0109-5641(02)00027-1

    Article  CAS  Google Scholar 

  2. C. Leyens, M. Peters, Titanium and titanium alloys: fundamentals and applications (John Wiley & Sons, USA, 2003) https://doi.org/10.1002/3527602119

    Book  Google Scholar 

  3. Y.M. Ahmed, K.S.M. Sahari, M. Ishak, B.A. Khidhir, Titanium and its alloy. Int. J. Sci. Res. 3, 1351–1361 (2014)

    Google Scholar 

  4. Y. Alshammari, F. Yang, L. Bolzoni, Yield of binary Ti-Cu and Ti-Mn alloys produced via powder metallurgy. Appl. Mech. Mater. 884, 49–57 (2018). https://doi.org/10.4028/www.scientific.net/AMM.884.49

    Article  Google Scholar 

  5. Y. Takada, O. Okuno, Corrosion characteristics of α-Ti and Ti2Cu composing Ti-Cu alloys. Dent. Mater. J. 24, 610–616 (2005). https://doi.org/10.4012/dmj.24.610

    Article  CAS  Google Scholar 

  6. X. Yao, Q.Y. Sun, L. Xiao, J. Sun, Effect of Ti2Cu precipitates on mechanical behavior of Ti-2.5 Cu alloy subjected to different heat treatments. J. Alloys Compd. 484, 196–202 (2009). https://doi.org/10.1016/j.jallcom.2009.04.095

    Article  CAS  Google Scholar 

  7. S.M. Javadhesari, S. Alipour, M.R. Akbarpour, Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material. Colloids Surf. B Colloid Surf. B. 189, 110889 (2020). https://doi.org/10.1016/j.colsurfb.2020.110889

    Article  CAS  Google Scholar 

  8. Y. Xu, J. Jiang, Z. Yang, Q. Zhao, Y. Chen, Y. Zhao, The effect of copper content on the mechanical and tribological properties of hypo-hyper-and eutectoid Ti-Cu alloys. Materials. 13, 3411 (2020). https://doi.org/10.3390/ma13153411

    Article  CAS  Google Scholar 

  9. H. Paul, R. Chulist, M.M. Miszczyk, G. Cios, A. Galka, W. Skuza, P. Petrzak, I. Mania, Interfacial reactions and structural properties of explosively welded titanium/copper plates. IOP Conf. Ser. Mater. Sci. Eng. 770, 012033 (2020). https://doi.org/10.1088/1757-899X/770/1/012033

    Article  CAS  Google Scholar 

  10. C.D. Bohórquez, S.P. Pérez, A. Sarmiento, M.E. Mendoza, Effect of temperature on morphology and wear of a Cu-Ti-TiC MMC sintered by abnormal glow discharge. Mater. Res. Express. 7, 026501 (2020). https://doi.org/10.1088/2053-1591/ab6e3b

    Article  CAS  Google Scholar 

  11. J. Wanga, S. Zhang, Z. Sun, H. Wang, L. Ren, K. Yang, Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant. J. Mater. Sci. Technol. 35, 2336–2344 (2019). https://doi.org/10.1016/j.jmst.2019.03.044

    Article  CAS  Google Scholar 

  12. M. Takahashi, M. Kikuchi, Y. Takada, O. Okuno, Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys. Dent. Mater. J. 21, 270–280 (2002). https://doi.org/10.4012/dmj.21.270

    Article  Google Scholar 

  13. C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, T. Hosoi, M. Hattori, Y. Oda, T. Okabe, Wear resistance of experimental Ti-Cu alloys. Biomaterials. 24, 3377–3381 (2003). https://doi.org/10.1016/S0142-9612(03)00157-1

    Article  CAS  Google Scholar 

  14. Q.Y. Sun, Z.T. Yu, R.H. Zhu, Dynamic fracture toughness of Ti-2.5 Cu alloy strengthened with nano-scale particles at room and low temperatures. Mater. Sci. Eng. A. 483, 131–134 (2008). https://doi.org/10.1016/j.msea.2006.11.171

    Article  CAS  Google Scholar 

  15. S.H. Huo, M. Qian, G.B. Schaffer, E. Crossin, (2011) Aluminium powder metallurgy. In: Fundamentals of Aluminium Metallurgy, Woodhead Publishing Series in Metals and Surface Engineering, 655-701 (2011), https://doi.org/10.1533/9780857090256.3.655

  16. P.E. de Jongh, T.M. Eggenhuisen, Melt infiltration: an emerging technique for the preparation of novel functional nanostructured materials. Adv. Mater. 25(46), 6672–6690 (2013). https://doi.org/10.1002/adma.201301912

    Article  CAS  Google Scholar 

  17. R. Dong, W. Zhu, C. Zhao, Y. Zhang, F. Ren, Microstructure, mechanical properties, and sliding wear behavior of spark plasma sintered Ti-Cu alloys. Metall. Mater. Trans. A. 49, 6147–6160 (2018). https://doi.org/10.1007/s11661-018-4953-0

    Article  CAS  Google Scholar 

  18. O. Taguchi, Y. Iijima, Diffusion of copper, silver and gold in α-titanium. Philos. Mag. A. 72, 1649–1655 (1995). https://doi.org/10.1080/01418619508243935

    Article  CAS  Google Scholar 

  19. C.B. Yi, Z.Y. Ke, L. Zhang, J. Tan, Y.H. Jiang, Z. He, Antibacterial Ti-Cu alloy with enhanced mechanical properties as implant applications. Mater. Res. Express. 7, 105404 (2020). https://doi.org/10.1088/2053-1591/abc371

    Article  CAS  Google Scholar 

  20. A.M.M. Gariba, S. Islak, H.R.H. Hraam, M. Akkaş, Microstructural and mechanical properties of Ti-B4C/CNF functionally graded materials. Metallogr. Microstruct. Anal. 11, 736–745 (2022). https://doi.org/10.1007/s13632-022-00900-8

    Article  CAS  Google Scholar 

  21. T. Luangvaranunt, P. Pripanapong, Pin-on-disc wear of precipitation hardened titanium–copper alloys fabricated by powder metallurgy. Mater. Trans. 53, 518–523 (2012). https://doi.org/10.2320/matertrans.M2011293

    Article  CAS  Google Scholar 

  22. S. Islak, Ö. Küçük, Ö. Eski, C. Özorak, M. Akkaş, The effect of CNT content and sintering temperature on some properties of CNT-reinforced MgAl composites. Sci. Sint. 49, 347–357 (2017). https://doi.org/10.2298/SOS1704347I

    Article  CAS  Google Scholar 

  23. Y. Alshammari, F. Yang, L. Bolzoni, Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material. J. Mech. Behav. Biomed. Mater. 95, 232–239 (2019). https://doi.org/10.1016/j.jmbbm.2019.04.004

    Article  CAS  Google Scholar 

  24. K.H. Min, S.P. Kang, D.G. Kim, Y. Do Kim, Sintering characteristic of Al2O3-reinforced 2xxx series Al composite powders. J. Alloys Compd. 400, 150–153 (2005). https://doi.org/10.1016/j.jallcom.2005.03.070

    Article  CAS  Google Scholar 

  25. H.R.H. Hraam, Investigation of the microstructure and mechanical properties of titanium-based-material produced by powder metallurgy technique (Institute of Science Kastamonu University, Turkey, 2021)

    Google Scholar 

  26. L. Bolzoni, F. Yang, M. Paul, Development and characterisation of low-cost powder metallurgy Ti-Cu-Fe alloys. J. Mater. Res. Technol. 24, 2678–2687 (2023). https://doi.org/10.1016/j.jmrt.2023.03.178

    Article  CAS  Google Scholar 

  27. K.N. Campo, C.C.D. Freitas, É.S.N. Lopes, S.C. Moon, R. Dippenaar, R. Caram, Microstructure and mechanical behavior of Ti-Cu alloys produced by semisolid processing. Trans. Nonferrous Met. Soc. China. 32(11), 3578–3586 (2022). https://doi.org/10.1016/S1003-6326(22)66040-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Islak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hraam, H.R.H., Islak, S. & Gariba, A.M.M. Microstructure and Mechanical Properties of Ti-Cu-Based Materials Produced by Using Reactive Melt Infiltration and Liquid Phase Sintering Techniques. Metallogr. Microstruct. Anal. 12, 662–671 (2023). https://doi.org/10.1007/s13632-023-00978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-00978-8

Keywords

Navigation