Skip to main content

Advertisement

Log in

Microstructural and Mechanical Properties of Ti-B4C/CNF Functionally Graded Materials

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This study aims to investigate the microstructural and mechanical properties of titanium (Ti) matrix boron carbide (B4C) + carbon nanofiber (CNF)-reinforced functional-graded materials (FGMs) produced using the powder metallurgy method. B4C was added to the Ti matrix at different rates, namely, 5, 10, and 15% by volume, and CNF was added at a rate of 0.5% by volume. The effect of B4C and CNF on the properties of these composite layers was then investigated. In addition, the mechanical properties of the FGMs were compared with the mechanical properties of non-layered structures. In addition, the microstructural, phase formation, hardness, and transverse rupture strength properties of the samples were investigated in detail. The microstructural investigation revealed that the B4C and CNF were homogeneously distributed throughout the Ti matrix and that the layers had bonded properly. With the addition of B4C and CNF, the hardness of the materials increased significantly. The transverse rupture strengths of the FGMs were higher than those of the non-layered samples (with the exception of pure Ti), indicating that the middle layers increased the toughness of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Ma, Z. He, G.E.B. Tan, Fabrication and characterization of Ti-TiB2 functionally graded material system. Metall. Mater. Trans. A. 33, 681–685 (2002)

    Article  Google Scholar 

  2. M. Koizumi, FGM activities in Japan. Compos. B. Eng. 28, 1–4 (1997)

    Article  Google Scholar 

  3. F. Erdemir, A. Canakci, T. Varol, Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques. Trans. Nonferrous Met. Soc. China. 25, 3569–3577 (2015)

    Article  CAS  Google Scholar 

  4. F. Erdemir, A. Canakci, T. Varol, S. Ozkaya, Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation. J. Alloys Compd. 644, 589–596 (2015)

    Article  CAS  Google Scholar 

  5. R.M. Mahamood, E.T. Akinlabi, Future research direction in functionally graded materials and summary. in Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering. (Springer, Cham, 2017) pp. 93–103

  6. H.S. Hedia, N. Fouda, A new design of dental implant coating using functionally graded material. Mater. Test. 55, 765–771 (2013)

    Article  CAS  Google Scholar 

  7. S.C. Tjong, Y.W. Mai, Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68, 583–601 (2008)

    Article  CAS  Google Scholar 

  8. Z. Zhang, J. Qin, Z. Zhang, Y. Chen, W. Lu, D. Zhang, Effect of β heat treatment temperature on microstructure and mechanical properties of in situ titanium matrix composites. Mater. Des. 31, 4269–4273 (2010)

    Article  CAS  Google Scholar 

  9. H. Duan, Y. Han, W. Lu, L. Wang, J. Mao, D. Zhang, Configuration design and fabrication of laminated titanium matrix composites. Mater. Des. 99, 219–224 (2016)

    Article  CAS  Google Scholar 

  10. K. Kondoh, Titanium Metal Matrix Composites by Powder Metallurgy (PM) Routes. Titanium Powder Metallurgy (Butterworth-Heinemann, Oxford, 2015), pp. 277–297

    Google Scholar 

  11. A. Muthuchamy, G.D.J. Ram, V.S. Sarma, Spark plasma consolidation of continuous fiber reinforced titanium matrix composites. Mat. Sci. Eng. A. 703, 461–469 (2017)

    Article  CAS  Google Scholar 

  12. C.J. Zhang, F.T. Kong, L.J. Xu, E.T. Zhao, S.L. Xiao, Y.Y. Chen, N.J. Deng, W. Ge, G.J. Xu, Temperature dependence of tensile properties and fracture behavior of as rolled TiB/Ti composite sheet. Mat. Sci. Eng. A. 556, 962–969 (2012)

    Article  CAS  Google Scholar 

  13. H. Xu, Q. Li, Effect of carbon nanofiber concentration on mechanical properties of porous magnesium composites: experimental and theoretical analysis. Mat. Sci. Eng. A. 706, 249–255 (2017)

    Article  CAS  Google Scholar 

  14. M.G. Randal, Powder Metallurgy and Particulate Materials Processing, Metal Powder Industry (2005)

  15. L.I. Shufeng, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB. Mat. Sci. Eng. A. 628, 75–83 (2015)

    Article  Google Scholar 

  16. A.S. Namini, M. Azadbeh, M.S. Asl, Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiBw composites. Adv. Powder Technol. 28, 1564–1572 (2017)

    Article  Google Scholar 

  17. S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Y. Fu, Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater. Des. 95, 127–132 (2016)

    Article  CAS  Google Scholar 

  18. M. Nazarian-Samani, A.R. Kamali, R. Mobarra, Phase transformations of Ni-15 wt.% B powders during mechanical alloying and annealing. Mater. Lett. 64, 309–312 (2010)

    Article  CAS  Google Scholar 

  19. S. Islak, Effect of sintering parameters on sawing performance of marble cutting tools with carbide, PhD thesis, Firat University, Turkey (2012).

  20. I.N. Popescu, S. Zamfir, V.F. Anghelina, C.O. Rusanescu, Processing by P/M route and characterization of new ecological aluminum matrix composites (AMC). Int. J. Mech. 4, 43–52 (2010)

    Google Scholar 

  21. M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 209, 5387–5393 (2009)

    Article  CAS  Google Scholar 

  22. S.A. Sajjadi, H.R. Ezatpour, H. Beygi, Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mat. Sci. Eng. A. 528, 8765–8771 (2011)

    Article  CAS  Google Scholar 

  23. M. Rahimian, N. Parvin, N. Ehsani, Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mat. Sci. Eng. A. 527, 1031–1038 (2010)

    Article  Google Scholar 

  24. S. Buytoz, F. Dağdelen, S. Islak, M. Kök, D. Kır, E. Ercan, Effect of the TiC content on microstructure and thermal properties of Cu–TiC composites prepared by powder metallurgy. J. Therm. Anal. Calorim. 117, 1277–1283 (2014)

    Article  CAS  Google Scholar 

  25. S. Islak, Mechanical and corrosion properties of AlCu matrix hybrid composite materials. Sci. Sinter. 51, 81–92 (2019)

    Article  CAS  Google Scholar 

  26. M.M.H. Bastwros, A.M.K. Esawi, A. Wifi, Friction and wear behavior of Al–CNT composites. Wear. 307, 164–173 (2013)

    Article  CAS  Google Scholar 

  27. S. Islak, Ö. Küçük, Ö. Eski, C. Özorak, M. Akkaş, The effect of CNT content and sintering temperature on some properties of CNT-reinforced MgAl composites. Sci. Sinter. 49, 347–357 (2017)

    Article  CAS  Google Scholar 

  28. K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005)

    Article  CAS  Google Scholar 

  29. X. Jin, L. Wu, Y. Sun, L. Guo, Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials. Mat. Sci. Eng. A. 509, 63–68 (2009)

    Article  Google Scholar 

  30. J. Dwan, Fracture toughness determination of diamond impregnated PM cobalt. Ind. Diamond Rev. 1, 33–36 (2007)

    Google Scholar 

  31. S. Islak, H. Çelik, Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments. Sci. Sinter. 47, 131–143 (2015)

    Article  CAS  Google Scholar 

  32. Y. Chen, S. Wang, B. Liu, J. Zhang, Effects of geometrical and mechanical properties of fiber and matrix on composite fracture toughness. Compos. Struct. 122, 496–506 (2015)

    Article  Google Scholar 

  33. C.R. Chiang, Prediction of the fracture toughness of fibrous composites. J. Mater. Sci. 35, 3161–3166 (2000)

    Article  CAS  Google Scholar 

  34. H. Singh, M. Hayat, Z. He, V.K. Peterson, R. Das, P. Cao, In situ neutron diffraction observations of Ti-TiB composites. Compos. Part A-Appl. S. 124, 105501 (2019)

    Article  CAS  Google Scholar 

  35. Z. Yan, F. Chen, Y. Cai, Y. Zheng, Microstructure and mechanical properties of in-situ synthesized TiB whiskers reinforced titanium matrix composites by high-velocity compaction. Powder Technol. 267, 309–314 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Islak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gariba, A.M.M., Islak, S., Hraam, H.R.H. et al. Microstructural and Mechanical Properties of Ti-B4C/CNF Functionally Graded Materials. Metallogr. Microstruct. Anal. 11, 736–745 (2022). https://doi.org/10.1007/s13632-022-00900-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00900-8

Keywords

Navigation