Skip to main content
Log in

Microstructure, Mechanical Properties and Fretting Wear Behavior of Gravity Die Cast and Squeeze Cast AZ91 Mg Alloy

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the present work, the change in microstructure and mechanical properties of squeeze cast (SC) AZ91 Mg alloy has been studied by comparing it with conventional gravity die-cast (GC) AZ91 alloy. The present study also focuses on the effect of microstructure change in GC and SC AZ91 samples on the fretting wear behavior. The fretting wear studies are conducted on GC and SC AZ91 samples against the EN31 steel pin by variation in applied loads (5, 10, 15 N) and oscillating frequencies (5, 10, 15 Hz). SC AZ91 alloy exhibits improved tensile properties than that of GC AZ91 due to refined microstructure. The study demonstrates that the average coefficient of friction decreases with an increase in normal load and increases with an increase in frequency for both GC and SC AZ91. The wear volume loss is found to increase with an increase in applied load and frequency. It is proposed that the wear in GC and SC AZ91 alloy is caused by a combination of adhesion, oxidation, delamination, and abrasion under different fretting conditions. For every condition studied in the present work, the SC AZ91 exhibits better fretting wear resistance compared to GC AZ91.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.L. Mordike, K.U. Kainer, Magnesium alloys and their application (Wiley, Weinheim, 2000)

    Google Scholar 

  2. H. Borkar, M. Hoseini, M. Pekguleryuz, Effect of strontium on the texture and mechanical properties 445 of extruded Mg–1% Mn alloys. Mater. Sci. Eng. A. 549, 168–175 (2012). https://doi.org/10.1016/j.msea.2012.04.029

    Article  CAS  Google Scholar 

  3. D. Eliezer, E. Aghion, F.H. Froes, Magnesium science, technology and applications. Adv. Perform. Mater. 5, 201–212 (1998)

    Article  CAS  Google Scholar 

  4. B.L. Mordike, T. Ebert, Magnesium properties—applications—potential. Mater. Sci. Eng. A. 302, 37–45 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  5. A.S. Marodkar, H. Patil, H. Borkar, A. Behl, Effect of squeeze casting and combined addition of calcium and strontium on microstructure and mechanical properties of AZ91 magnesium alloy. Int. J. Met. 2023, 1–19 (2023). https://doi.org/10.1007/s40962-022-00943-1

    Article  CAS  Google Scholar 

  6. F. Aydin, Y. Sun, M.E. Turan, The effect of TiB2 content on wear and mechanical behavior of az91 magnesium matrix composites produced by powder metallurgy. Powder Metall. Met. Ceram. 57, 564–572 (2019). https://doi.org/10.1007/s11106-019-00016-9

    Article  CAS  Google Scholar 

  7. L. Zhang, Q. Wang, W. Liao, W. Guo, B. Ye, H. Jiang, W. Ding, Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy. J. Mater. Sci. Technol. 33, 935–940 (2017). https://doi.org/10.1016/j.jmst.2017.01.015

    Article  CAS  Google Scholar 

  8. Y. Cubides, A.I. Karayan, M.W. Vaughan, I. Karama, H. Castaned, Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: the role of bimodal grain structure and β-Mg17Al12 precipitates. Materialia. 13, 100840 (2020). https://doi.org/10.1016/j.mtla.2020.100840

    Article  CAS  Google Scholar 

  9. A. Zafari, H.M. Ghasemi, R. Mahmudi, Tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear. 292–293, 33–40 (2012). https://doi.org/10.1016/j.wear.2012.06.002

    Article  CAS  Google Scholar 

  10. A. Azad, L. Bichler, A. Elsayed, Effect of a novel Al–SiC grain refiner on the microstructure and properties of AZ91E magnesium alloy. Int. J. Met. 7, 49–59 (2013). https://doi.org/10.1007/BF03355564

    Article  CAS  Google Scholar 

  11. I. Gokalp, A. Incesu, Effect of Ca addition to the elevated temperature mechanical properties of AZ series magnesium alloys. Int. J. Met. 17, 1402–1412 (2023). https://doi.org/10.1007/s40962-022-00872-z

    Article  CAS  Google Scholar 

  12. H. Mohammadi, M. Emamy, Z. Hamnabard, The microstructure, mechanical and wear properties of AZ91-x% B4C metal matrix composites in as-cast and extruded conditions. Mater. Res. Express. 6(12), 126522 (2019). https://doi.org/10.1088/2053-1591/ab5405

    Article  CAS  Google Scholar 

  13. A. Afsharnaderi, M. Lotfpour, H. Mirzadeh, M. Emamy, M. Malekan, Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE-Sr addition and hot extrusion. Mater. Sci. Eng. A. 792, 139817 (2020). https://doi.org/10.1016/j.msea.2020.139817

    Article  CAS  Google Scholar 

  14. Y. Zhang, G. Wu, W. Liu, L. Zhang, S. Pang, Y. Wang, W. Ding, Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Mater. Sci. Eng. A. 595, 109–117 (2014). https://doi.org/10.1016/j.msea.2013.12.014

    Article  CAS  Google Scholar 

  15. H. Hu, Squeeze casting of magnesium alloys and their composites. J. Mater. Sci. 33, 1579–1589 (1998)

    Article  CAS  Google Scholar 

  16. F. Pan, M. Yang, X. Chen, A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32, 1211–1221 (2016). https://doi.org/10.1016/j.jmst.2016.07.001

    Article  CAS  Google Scholar 

  17. P.I. Hurricks, The mechanism of fretting—a review. Wear. 16, 389–409 (1970). https://doi.org/10.1016/0043-1648(70)90235-8

    Article  Google Scholar 

  18. D.S. Mehta, S.H. Masood, W.Q. Song, Investigation of wear properties of magnesium and aluminum alloys for automotive applications. J. Mater. Process. Technol. 155–156, 1526–1531 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.247

    Article  CAS  Google Scholar 

  19. N.N. Aung, W. Zhou, L.E.N. Lim, Wear behaviour of AZ91d alloy at low sliding speeds. Wear. 265, 780–786 (2008). https://doi.org/10.1016/j.wear.2008.01.012

    Article  CAS  Google Scholar 

  20. D. Khabale, M.F. Wani, Tribological characterization of AZ91 and AE42 magnesium alloys in fretting contact. J. Tribol. 140, 011604 (2018). https://doi.org/10.1115/1.4036922

    Article  CAS  Google Scholar 

  21. H. Weijiu, Z. Rongchang, C. Anhu, A comparative study on the fretting wear resistant properties of AZ91D and AM60B magnesium alloys. Mater. Sci. Forum. 488–489, 745–748 (2005). https://doi.org/10.4028/www.scientific.net/MSF.488-489.745

    Article  Google Scholar 

  22. R. Ramesh, R. Gnanamoorthy, Effect of hardness on fretting wear behaviour of structural steel, En 24, against bearing steel, En 31. Mater. Des. 28, 1447–1452 (2007). https://doi.org/10.1016/j.matdes.2006.03.020

    Article  CAS  Google Scholar 

  23. J.A. Halling, Crossed-cylinder wear machine and its use in the study of severe wear of brass on mild steel. Wear. 4, 22–31 (1961)

    Article  Google Scholar 

  24. K. Sikdar, S. Shekhar, K. Balani, Fretting wear of Mg–Li–Al based alloys. Wear. 318, 177–187 (2014). https://doi.org/10.1016/j.wear.2014.06.012

    Article  CAS  Google Scholar 

  25. A.K.S. Bankoti, A.K. Mondal, S. Kumar, B.C. Ray, Individual and combined additions of calcium and antimony on microstructure and mechanical properties of squeeze-cast AZ91D magnesium alloy. Mater. Sci. Eng. A. 626, 186–194 (2015). https://doi.org/10.1016/j.msea.2014.12.068

    Article  CAS  Google Scholar 

  26. R. Ramesh, R. Gnanamoorthy, Fretting wear behavior of liquid nitrided structural steel, En24 and Bearing Steel, En31. J. Mater. Process. Technol. 171, 61–67 (2006). https://doi.org/10.1016/j.jmatprotec.2005.06.048

    Article  CAS  Google Scholar 

  27. M. Horynová, J. Zapletal, P. Doležal, P. Gejdoš, Evaluation of fatigue life of AZ31 magnesium alloy 518 fabricated by squeeze casting. Mater. Des. 45, 253–264 (2013). https://doi.org/10.1016/j.matdes.2012.08.079

    Article  CAS  Google Scholar 

  28. T.M. Yue, H. Ha, N. Musson, Grain size effects on the mechanical properties of some squeeze cast light alloys. J. Mater. Sci. 30, 2277–2283 (1995). https://doi.org/10.1007/BF01184573

    Article  CAS  Google Scholar 

  29. M. Masoumi, H. Hu, Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg–Al–Ca alloy. Mater. Sci. Eng. A. 528, 3589–3593 (2011). https://doi.org/10.1016/j.msea.2011.01.032

    Article  CAS  Google Scholar 

  30. S. Kleiner, O. Beffort, A. Wahlen, P. Uggowitzer, Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg–Al alloys. J. Light Met. 2, 277–280 (2002). https://doi.org/10.1016/S1471-5317(03)00012-9

    Article  Google Scholar 

  31. Y. Cubides, A.I. Karayan, M. Vaughan, I. Karaman, H. Castaneda, Enhanced mechanical properties and corrosion resistance of a fine-grained Mg–9Al–1Zn alloy: the role of bimodal grain structure and β-Mg17Al12 precipitates. Materials. 13, 100840 (2020). https://doi.org/10.1016/j.mtla.2020.100840

    Article  CAS  Google Scholar 

  32. Y. Zhang, G. Wu, W. Liu, L. Zhang, S. Pang, Y. Wang, W. Ding, Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Mater. Sci. Eng. A. 595, 109–117 (2014). https://doi.org/10.1016/j.msea.2013.12.014

    Article  CAS  Google Scholar 

  33. J. Bai, Y. Sun, F. Xue, J. Qiang, Microstructures and creep properties of Mg–4Al–(1–4) La alloys produced by different casting techniques. Mater. Sci. Eng. A. 552, 472–480 (2012). https://doi.org/10.1016/j.msea.2012.05.072

    Article  CAS  Google Scholar 

  34. H. Yu, S. Chen, W. Yang, Y. Zhang, S. Chen, Effects of rare element and pressure on the microstructure and mechanical property of AZ91D alloy. J. Alloys Compd. 589, 479–484 (2014). https://doi.org/10.1016/j.jallcom.2013.12.019

    Article  CAS  Google Scholar 

  35. L.A. Dobrzanski, T. Tanski, L. Cizek, J. Domagał, Mechanical properties and wear resistance of magnesium casting alloys. J. Achiev. Mater. Manuf. Eng. 31(1), 83–90 (2008)

    Google Scholar 

  36. G.E. Dieter, Mechanical metallurgy, SI metric (McGraw-Hill, London, 1988)

    Google Scholar 

  37. U. Bryggman, S. Sodenberg, Contact conditions and surface degradation mechanisms in low amplitude fretting. Wear. 125, 39–52 (1988)

    Article  CAS  Google Scholar 

  38. N.P. Suh, The delamination theory of wear. Wear. 25, 111 (1973)

    Article  CAS  Google Scholar 

  39. R.B. Waterhouse, D.E. Taylor, Fretting debris and the delamination theory of wear. Wear. 29, 337–344 (1974)

    Article  Google Scholar 

Download references

Acknowledgments

The author Ankush S. Marodkar would like to thank the Ministry of Education, Government of India for providing a teaching assistantship for doctoral studies. The authors express their gratitude to the Advanced Welding Lab, IIT Indore for providing the facilities for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Borkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marodkar, A.S., Patil, H. & Borkar, H. Microstructure, Mechanical Properties and Fretting Wear Behavior of Gravity Die Cast and Squeeze Cast AZ91 Mg Alloy. Metallogr. Microstruct. Anal. 12, 702–713 (2023). https://doi.org/10.1007/s13632-023-00974-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-00974-y

Keywords

Navigation