Skip to main content
Log in

Microstructure and Mechanical Properties of Cu-6.5%Al Alloy Deposited by Wire Arc Additive Manufacturing

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this work, Cu-6.5% Al alloy was deposited by wire arc additive manufacturing based on cold metal transfer (CMT) welding process, through separate feeding of pure Cu and Al wires into a molten pool, onto a 3-mm pure copper plate. The deposited alloy was homogenized by heat treatment at 800 °C (2 h) and evaluated for their microstructure using optical microscopy, scanning electron microscopy and transmission electron microscopy, and mechanical properties. The paper discusses the structure-mechanical property correlation under both as-fabricated and heat-treated condition. Results reveal that (1) the CMT welding process is efficient in making Cu-Al alloy with target chemical composition, (2) heat treatment improved solid solution strengthening effect, which improved the hardness, and (3) heat treatment improved tensile strength properties and ductility of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, H.J. Yang, Z.F. Zhang, Exploring the strength and ductility improvement of Cu-Al alloys. Mater. Sci. Eng. A. 786, 139441 (2020)

    Article  CAS  Google Scholar 

  2. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 534(7606), 227 (2016)

    Article  CAS  Google Scholar 

  3. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12(4), 344 (2013)

    Article  CAS  Google Scholar 

  4. D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, H. Kato, A. Inoue, Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53(7), 2009 (2005)

    Article  CAS  Google Scholar 

  5. R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, X.H. An, Z.F. Zhang, Exploring the fatigue strength improvement of Cu-Al alloys. Acta Mater. 144, 613 (2018)

    Article  CAS  Google Scholar 

  6. N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater. 47(12), 893 (2002)

    Article  CAS  Google Scholar 

  7. H.B. Ma, K.X. Ren, R.F. Qiu, H.X. Shi, Growth behavior of intermetallic compounds at Cu/Al solid state interface. Cailiao Rechuli Xuebao Trans. Mater. Heat Treat. 40(7), 60 (2019)

    CAS  Google Scholar 

  8. B. Dong, Z. Pan, C. Shen, Y. Ma, H. Li, Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process. Metall. Mater. Trans. B. 48(6), 3143 (2017)

    Article  CAS  Google Scholar 

  9. Y. Wang, X. Chen, S. Konovalov, C. Su, A.N. Siddiquee, N. Gangil, In-situ wire-feed additive manufacturing of Cu-Al alloy by addition of silicon. Appl. Surf. Sci. 487, 1366–1375 (2019)

    Article  CAS  Google Scholar 

  10. R. Uscinowicz, Impact of temperature on shear strength of single lap Al-Cu bimetallic joint. Compos. B Eng. 44(1), 344 (2013)

    Article  CAS  Google Scholar 

  11. L. M. Dimaté Castellanos: Resistencia a La Corrosión En Recubrimientos Comerciales Metaceram 25050 y Proxon 21071 Producidos Con El Sistema de Proyección Térmica Por Llama, 2011

  12. T. Gustmann, A. Neves, U. Kühn, P. Gargarella, C.S. Kiminami, C. Bolfarini, J. Eckert, S. Pauly, Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit. Manuf. 11, 23 (2016)

    CAS  Google Scholar 

  13. K.R.W. Xuesong Gao, G.A. Faria, W. Zhang, Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing. Comput. Mater. Sci. 179(15), 109648 (2020)

    Google Scholar 

  14. B. Cong, J. Ding, S. Williams, Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int. J. Adv. Manuf. Technol. 76(9–12), 1593 (2015)

    Article  Google Scholar 

  15. Y. Wang, S. Konovalov, X. Chen, Y. Ivanov, S. Jayalakshmi, R.A. Singh, Research on Cu-6.6%Al-3.2%Si alloy by dual wire arc additive manufacturing. J. Mater. Eng. Perfor. 30(3), 1694 (2021)

    Article  CAS  Google Scholar 

  16. K. Liu, X. Chen, Q. Shen, Z. Pan, R.A. Singh, S. Jayalakshmi, S. Konovalov, Microstructural evolution and mechanical properties of deep cryogenic treated Cu-Al-Si alloy fabricated by cold metal transfer (CMT) process. Mater. Charact. 159, 110011 (2020)

    Article  CAS  Google Scholar 

  17. X.H. An, S. Qu, S.D. Wu, Z.F. Zhang, Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu-Al alloys during thermal annealing. J. Mater. Res. 26(3), 407 (2011)

    Article  CAS  Google Scholar 

  18. D. Wu, W. Lin Wang, L. Gang Zhang, Z. Yu Wang, K. Chao Zhou, L. Bin Liu, New high-strength Ti-Al-V-Mo alloy: from high-throughput composition design to mechanical properties. Int. J. Miner. Metall. Mater. 26, 1151 (2019)

    Article  CAS  Google Scholar 

  19. C. Shen, Z. Pan, D. Cuiuri, B. Dong, H. Li, In-depth study of the mechanical properties for Fe3Al based iron aluminide fabricated using the wire-arc additive manufacturing process. Mater. Sci. Eng. A. 669, 118 (2016)

    Article  CAS  Google Scholar 

  20. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science. 355(6331), 1292 (2017)

    Article  CAS  Google Scholar 

  21. J. Tao, G. Chen, W. Jian, J. Wang, Y. Zhu, X. Zhu, T.G. Langdon, Materials science and engineering a anneal hardening of a nanostructured Cu-Al alloy processed by high-pressure torsion and rolling. Mater. Sci. Eng. A. 628, 207 (2015)

    Article  CAS  Google Scholar 

  22. Y. Wang, S. Konovalov, X. Chen, V.B. Deev, E.S. Prusov, Deformation behavior of Cu-6.5 wt% Al alloy under quasi-static tensile loading. J. Mater. Eng. Perform. 30(8), 1–7 (2021)

    Google Scholar 

  23. T.S. Srivatsan, A review of fractography: observing, measuring, and interpreting fracture surface topography, D. Hull. Mater. Manuf. Process. 24, 10–11 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China under the Grant No. 51975419 and Foreign Experts Bureau Project of China under Grant Nos. QN20200116001 and G20200116018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Konovalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Su, C. & Konovalov, S. Microstructure and Mechanical Properties of Cu-6.5%Al Alloy Deposited by Wire Arc Additive Manufacturing. Metallogr. Microstruct. Anal. 10, 634–641 (2021). https://doi.org/10.1007/s13632-021-00781-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00781-3

Keywords

Navigation