Skip to main content
Log in

Research on Cu-6.6%Al-3.2%Si Alloy by Dual Wire Arc Additive Manufacturing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the cold metal transfer (CMT) welding technique was used to additive manufacture Cu-6.6%Al-3.2%Si alloy. A dual wire feeding approach was adopted to separately feed SAFRA CuSi3 wire and AlSi5-ER4043 wire into the molten pool. To overcome the defect of non-uniform sample height, the CMT welding head was used in the round-trip configuration to deposit the samples. The deposited samples were characterized for their (1) microstructure and (2) mechanical properties of hardness and tensile strength. Microstructural characterization was done using optical microscopy (OM), scanning electron microscopy and transmission electron microscopy. From the elemental analysis, the central region of the deposited layer was enriched in aluminum and depleted in silicon compared to the region at the border of the layer. Evaluation of the mechanical properties showed that the deposited samples had good strength and ductility. The addition of silicon and manganese effectively improved the hardness and tensile strength properties of the deposited alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Mohd Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  CAS  Google Scholar 

  2. T. Gustmann, A. Neves, U. Kühn, P. Gargarella, C.S. Kiminami, C. Bolfarini, J. Eckert, and S. Pauly, Influence of Processing Parameters on the Fabrication of a Cu-Al-Ni-Mn Shape-Memory Alloy by Selective Laser Melting, Addit. Manuf., 2016, 11, p 23–31. https://doi.org/10.1016/j.addma.2016.04.003

    Article  CAS  Google Scholar 

  3. L.M. Dimaté Castllanos, J.J. Olaya Florez, and J.E. Alfonso Orjuela, Resistencia a la corrosión en recubrimientos Cu-Al producidos con el sistema de proyección térmica por llama, Ing. Invest., 2012, 32, p 18–23. (in Spanish)

    Google Scholar 

  4. O. Johari, and G. Thomas, Factors Affecting Dislocation Substructures in Deformed Copper, Acta Metall., 1964, 12, p 679–682. https://doi.org/10.1016/0001-6160(64)90044-6

    Article  CAS  Google Scholar 

  5. C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, H.J. Yang, and Z.F. Zhang, Exploring the Strength and Ductility Improvement of Cu–Al Alloys, Mater. Sci. Eng. A, 2020 https://doi.org/10.1016/j.msea.2020.139441

    Article  Google Scholar 

  6. O. Johari, and G. Thomas, Substructures in explosively deformed Cu and Cu-Al alloys, Acta Metall., 1964, 12, p 1153–1159. https://doi.org/10.1016/0001-6160(64)90095-1

    Article  CAS  Google Scholar 

  7. Y.Z. Tian, L.J. Zhao, N. Park, R. Liu, P. Zhang, Z.J. Zhang, A. Shibata, Z. Zhang, and N. Tsuji, Revealing the Deformation Mechanisms of Cu–Al Alloys with High Strength and Good Ductility, Acta Mater., 2016, 110, p 61–72. https://doi.org/10.1016/j.actamat.2016.03.015

    Article  CAS  Google Scholar 

  8. H. Yuan, C. Yiqing, L. Li, H. Huan-dong, and Z. Ziang, Microstructure and Properties of Al/Cu Bimetal in Liquid-Solid Compound Casting Process, Trans. Nonferrous Met. Soc. China, 2016, 26, p 1555–1563. https://doi.org/10.1016/S1003-6326(16)64261-9

    Article  CAS  Google Scholar 

  9. Y. Wang, X. Chen, and S.V. Konovalov, Additive Manufacturing Based on Welding Arc: A Low-Cost Method, J Surf. Invest., 2017, 11, p 1317–1328. https://doi.org/10.1134/S1027451017060210

    Article  CAS  Google Scholar 

  10. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove, Wire + arc additive manufacturing, Mater. Sci. Technol. (United Kingdom), 2016, 32, p 641–647. https://doi.org/10.1179/1743284715Y.0000000073

    Article  CAS  Google Scholar 

  11. Y. Guo, H. Pan, L. Ren, and G. Quan, Microstructure and Mechanical Properties of Wire Arc Additively Manufactured AZ80M Magnesium Alloy, Mater. Lett., 2019, 247, p 4–6. https://doi.org/10.1016/j.matlet.2019.03.063

    Article  CAS  Google Scholar 

  12. R. Tino, M. Leary, A. Yeo, E. Kyriakou, T. Kron, and M. Brandt, Additive Manufacturing in Radiation Oncology: A Review of Clinical Practice, Emerging Trends and Research Opportunities, Int. J. Extrem. Manuf., 2020, 2, p 012003.

    Article  CAS  Google Scholar 

  13. F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang, Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti-6Al-4V, J. Mater. Process. Technol., 2012, 212, p 1377–1386. https://doi.org/10.1016/j.jmatprotec.2012.02.002

    Article  CAS  Google Scholar 

  14. D. Ding, C. Shen, Z. Pan, D. Cuiuri, H. Li, N. Larkin, and S.V. Duin, Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System from CAD to Finished Part, CAD Comput. Aided Des., 2016, 73, p 66–75. https://doi.org/10.1016/j.cad.2015.12.003

    Article  Google Scholar 

  15. D. Gu, M. Guo, H. Zhang, Y. Sun, R. Wang, and L. Zhang, Effects of Laser Scanning Strategies on Selective Laser Melting of Pure Tungsten, Int. J. Extrem. Manuf., 2020, 2, p 025001.

    Article  CAS  Google Scholar 

  16. M. Balasubramanian, M.V. Choudary, A. Nagaraja, and K.O.C. Sai, Cold Metal Transfer Process—A Review, Mater. Today Proc., 2020 https://doi.org/10.1016/j.matpr.2020.05.225

    Article  Google Scholar 

  17. B. Cong, J. Ding, and S. Williams, Effect of Arc Mode in Cold Metal Transfer Process on Porosity of Additively Manufactured Al-6.3%Cu Alloy, Int. J. Adv. Manuf. Technol., 2015, 76, p 1593–1606. https://doi.org/10.1007/s00170-014-6346-x

    Article  Google Scholar 

  18. B. Cong, Z. Qi, B. Qi, H. Sun, G. Zhao, and J. Ding, A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process, Appl. Sci. (Switzerland), 2017 https://doi.org/10.3390/APP7030275

    Article  Google Scholar 

  19. K. Liu, X. Chen, Q. Shen, Z. Pan, R.A. Singh, S. Jayalakshmi, and S. Konovalov, Microstructural Evolution and Mechanical Properties of Deep Cryogenic Treated Cu–Al–Si Alloy Fabricated by Cold Metal Transfer (CMT) Process, Mater. Charact., 2019 https://doi.org/10.1016/j.matchar.2019.110011

    Article  Google Scholar 

  20. L. Kun, C. Xizhang, Z. Yupeng, P. Zengxi, R. Arvind Singh, S. Jayalakshmi, and K. Sergey, Location Dependence of Microstructure and Mechanical Properties of Cu-Al Alloy Fabricated by Dual Wire CMT, Mater. Res. Exp., 2019 https://doi.org/10.1088/2053-1591/ab583e

    Article  Google Scholar 

  21. M. Zeren, Effect of Copper and Silicon Content on Mechanical Properties in Al-Cu-Si-Mg Alloys, J. Mater. Process. Technol., 2005, 169, p 292–298. https://doi.org/10.1016/j.jmatprotec.2005.03.009

    Article  CAS  Google Scholar 

  22. X.M. Pan, C. Lin, J.E. Morral, and H.D. Brody, An Assessment of Thermodynamic Data for the Liquid Phase in the Al-Rich Corner of the Al-Cu-Si System and Its Application to the Solidification of a 319 Alloy, J. Phase Equilib. Diffus., 2005, 26, p 225–233. https://doi.org/10.1361/15477030523625

    Article  CAS  Google Scholar 

  23. M. Weigl, F. Albert, and M. Schmidt, Enhancing the Ductility of Laser-Welded Copper-Aluminium Connections by Using Adapted Filler Material, Phys. Procedia, 2011, 12, p 335–341. https://doi.org/10.1016/j.phpro.2011.03.141

    Article  CAS  Google Scholar 

  24. W. Yanhu, C. Xizhang, K. Sergey, S. Chuanchu, N.S. Arshad, and G. Namrata, In-Situ Wire-Feed Additive Manufacturing of Cu-Al Alloy by Addition of Silicon, Appl. Surf. Sci., 2019, 487, p 1366–1375. https://doi.org/10.1016/j.apsusc.2019.05.068

    Article  CAS  Google Scholar 

  25. E. Aldalur, F. Veiga, A. Suárez, J. Bilbao, and A. Lamikiz, Analysis of the Wall Geometry with Different Strategies for High Deposition Wire Arc Additive Manufacturing of Mild Steel, Metals, 2020, 10, p 892. https://doi.org/10.3390/met10070892

    Article  CAS  Google Scholar 

  26. Y. Ma, D. Cuiuri, N. Hoye, H. Li, and Z. Pan, Characterization of In-Situ Alloyed and Additively Manufactured Titanium Aluminides, Metall. Mater. Trans. B, 2014, 45, p 2299–2303. https://doi.org/10.1007/s11663-014-0144-6

    Article  CAS  Google Scholar 

  27. R. Kainuma, N. Satoh, X.J. Liu, I. Ohnuma, and K. Ishida, Phase Equilibria and Heusler Phase Stability in the Cu-Rich Portion of the Cu-Al-Mn System, J. Alloys Comput., 1998, 266, p 191–200. https://doi.org/10.1016/S0925-8388(97)00425-8

    Article  CAS  Google Scholar 

  28. D. Dudina, O. Lomovsky, K. Valeev, S. Tikhov, N. Boldyreva, A. Salanov, S. Cherepanova, V. Zaikovskii, A. Andreev, O. Lapina, and V. Sadykov, Phase Evolution During Early Stages of Mechanical Alloying of Cu-13 wt.% Al Powder Mixtures in a High-Energy Ball Mill, J. Alloys Comput., 2015, 629, p 343–350. https://doi.org/10.1016/j.jallcom.2014.12.120

    Article  CAS  Google Scholar 

  29. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, and T.G. Langdon, An Investigation of Microstructural Stability in an AlMg Alloy with Submicrometer Grain Size, Acta Mater., 1996, 44, p 2973–2982. https://doi.org/10.1016/1359-6454(95)00395-9

    Article  CAS  Google Scholar 

  30. X.H. An, S.D. Wu, Z.G. Wang, and Z.F. Zhang, Significance of Stacking Fault Energy in Bulk Nanostructured Materials: Insights from Cu and Its Binary Alloys as Model Systems, Prog. Mater. Sci., 2019, 101, p 1–45. https://doi.org/10.1016/j.pmatsci.2018.11.001

    Article  CAS  Google Scholar 

  31. H. Wang, R. Zhang, X. Hu, C.-A. Wang, and Y. Huang, Characterization of a Powder Metallurgy SiC/Cu–Al Composite, J. Mater. Process. Technol., 2008, 197, p 43–48. https://doi.org/10.1016/j.jmatprotec.2007.06.002

    Article  CAS  Google Scholar 

  32. A.T. Adorno, and R.A. Silva, Ageing Behaviour in the Cu-10 wt.%Al and Cu-10 wt.%Al-4 wt.%Ag Alloys, J. Alloys Comput., 2009, 473, p 139–144. https://doi.org/10.1016/j.jallcom.2008.05.072

    Article  CAS  Google Scholar 

  33. H.H. Kuo, W.H. Wang, and Y.F. Hsu, Microstructural Characterization of Precipitates in Cu-10 wt.%Al-08 wt.%Be Shape-Memory Alloy, Mater. Sci. Eng. A, 2006, 430, p 292–144. https://doi.org/10.1016/j.msea.2006.05.061

    Article  CAS  Google Scholar 

  34. X. An, S. Qu, S.D. Wu, and Z.F. Zhang, Effects of Stacking Fault Energy on the Thermal Stability and Mechanical Properties of Nanostructured Cu–Al Alloys During Thermal Annealing, J. Mater. Res., 2011, 26, p 407–415. https://doi.org/10.1557/jmr.2010.39

    Article  CAS  Google Scholar 

  35. M. Zeren, Effect of Copper and Silicon Content on Mechanical Properties in Al–Cu–Si–Mg Alloys, J. Mater. Process. Technol., 2005, 169, p 292–298. https://doi.org/10.1016/j.jmatprotec.2005.03.009

    Article  CAS  Google Scholar 

  36. B.M. Gable, G.J. Shiflet, and E.A. Starke Jr., The Effect of Si Additions on Ω Precipitation in Al–Cu–Mg–(Ag) Alloys, Scr. Mater., 2004, 50, p 149–153. https://doi.org/10.1016/j.scriptamat.2003.09.004

    Article  CAS  Google Scholar 

  37. L. Liu, J.H. Chen, S.B. Wang, C.H. Liu, S.S. Yang, and C.L. Wu, The Effect of Si on Precipitation in Al–Cu–Mg Alloy with a High Cu/Mg Ratio, Mater. Sci. Eng. A, 2014, 606, p 187–195. https://doi.org/10.1016/j.msea.2014.03.079

    Article  CAS  Google Scholar 

  38. C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, H.J. Yang, and Z.F. Zhang, Exploring the Strength and Ductility Improvement of Cu–Al Alloys, Mater. Sci. Eng. A, 2020, 786, p 139441. https://doi.org/10.1016/j.msea.2020.139441

    Article  CAS  Google Scholar 

  39. D. Han, Z.Y. Wang, Y. Yan, F. Shi, and X.W. Li, A Good Strength-Ductility Match in Cu-Mn Alloys with High Stacking Fault Energies: Determinant Effect of Short-Range Ordering, Scr. Mater., 2017, 133, p 59–64. https://doi.org/10.1016/j.scriptamat.2017.02.010

    Article  CAS  Google Scholar 

  40. J.A. Yasi, L.G. Hector, and D.R. Trinkle, First-Principles Data for Solid-Solution Strengthening of Magnesium: From Geometry and Chemistry to Properties, Acta Mater., 2010, 58, p 5704–5713. https://doi.org/10.1016/j.actamat.2010.06.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China under Grant No. 51975419 and Foreign Experts Bureau Project of China under Grant No. QN20200116001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Konovalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Konovalov, S., Chen, X. et al. Research on Cu-6.6%Al-3.2%Si Alloy by Dual Wire Arc Additive Manufacturing. J. of Materi Eng and Perform 30, 1694–1702 (2021). https://doi.org/10.1007/s11665-021-05470-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05470-4

Keywords

Navigation