Skip to main content
Log in

Influence of Tool Tilt Angle on the Formation of Friction Stir Processing Zone in Cast Magnesium Alloy ZK60/SiCp Surface Composites

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Cast ZK60 magnesium alloy has significant beneficial properties including high strength-to-weight ratio. Poor surface properties such as low friction and wear resistance restrict the use of this alloy in structural applications. Therefore, it is very much essential to adopt surface engineering to enhance this alloy’s surface properties. Friction stir processing is one of the potential thermo-mechanical processing techniques that alters the microstructural and tribological properties of the material. In the present study, ZK60/SiCp was fabricated by means of FSP. Tool tilt angle is a critical process parameter which influences the material flow, and particle breakup and distribution in the processed zone. In this work, an attempt has been made to understand the effects of tool tilt angle (ranges 0°–4°) on the grain refinement of matrix and the distribution of SiC particles. It is shown that the FSPed materials zone produced using the tilt angle 2° exhibited higher hardness (125 Hv); this was attributed to the optimization of heat generation, material flow, grain boundary strengthening, and homogeneous particle distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.A. Monteiro, Special Issues on Magnesium Alloys (2011). ISBN 978-953-307- 391-0

  2. C. Blawert, N. Hort, K.U. Kainer, Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met. 57, 397–408 (2004)

    Google Scholar 

  3. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, International Patent Application PCT/GB92/02203 and GB Patent Application 9125978.8, UK Patent Office, London (1991)

  4. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Mater. 42(2), 163–168 (2000)

    Article  Google Scholar 

  5. Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Mater. 50, 4419–4430 (2002)

    Article  Google Scholar 

  6. V.V. Patel, V. Badheka, A. Kumar, Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications. Metallogr. Microstruct. Anal. 5(4), 278–293 (2016)

    Article  Google Scholar 

  7. P. Carlone, G.S. Palazzo, Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallogr. Microstruct. Anal. 2(4), 213–222 (2013)

    Article  Google Scholar 

  8. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. 50, 1–78 (2005)

    Article  Google Scholar 

  9. Y.N. Zhang, X. Cao, S. Larose, P. Wanjara, Review of tools for friction stir welding and processing. Can. Metall. Quart. 51, 250–261 (2012)

    Article  Google Scholar 

  10. M.L. Santella, T. Engstrom, D. Storjohann, T.Y. Pan, Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356. Scripta Mater. 53, 201–206 (2005)

    Article  Google Scholar 

  11. M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater. Des. 32, 2034–2041 (2011)

    Article  Google Scholar 

  12. P. Asadi, G. Faraji, M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing. Int. J. Adv. Manuf. Technol. 51, 247–260 (2010)

    Article  Google Scholar 

  13. D.M. Darras, M.K. Khaishesh, F.K. Abu-Faraha, M.A. Omar, Friction stir processing of commercial AZ 31 magnesium alloy. J. Mater. Process. Technol. 191, 77–81 (2007)

    Article  Google Scholar 

  14. W. Woo, H. Choo, D.W. Brown, P.K. Liaw, Z. Feng, Texture variation and its influence on the tensile behaviour of a friction-stir processed magnesium alloy. Scripta Mater. 54, 1859–1864 (2006)

    Article  Google Scholar 

  15. H.S. Arora, H. Singh, B.K. Dhindaw, Some observations on microstructural changes in a Mg based AE42 alloy subjected to friction stir processing. Metall. Mater. Trans. B 43, 92–108 (2012)

    Article  Google Scholar 

  16. S. Rameshbabu, V.S. Senthilkumar, G. Madhusudhan Reddy, L. Karunamoorthy, Microstructural changes and mechanical properties of friction stir Processed extruded AZ31B alloy. Proc Eng. 38, 2956–2966 (2012)

    Article  Google Scholar 

  17. Q. Yang, A.H. Feng, B.L. Xiao, Z.Y. Ma, Influence of texture on super plastic behavior of friction stir processed ZK60 magnesium alloy. Mater. Sci. Eng. A 556, 671–677 (2012)

    Article  Google Scholar 

  18. S. Muthukumaran, S.K. Mukherjee, Multi-layered metal flow and formation of onion rings in friction stir welds. J. Adv. Manuf. Technol. 38, 68–73 (2008)

    Article  Google Scholar 

  19. C.I. Chang, X.H. Du, J.C. Huang, Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing. Scripta Mater. 57, 209–212 (2007)

    Article  Google Scholar 

  20. G. Madhusudhan Reddy, K. Srinivasa Rao, A. Sambasiva Rao, Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy. Trans. Indian Inst. Met. 66, 13–24 (2013)

    Article  Google Scholar 

  21. W. Yuana, R.S. Mishra, Grain size and texture effects on deformation behavior of AZ31 magnesium alloy. Mater. Sci. Eng. A 558, 716–724 (2012)

    Article  Google Scholar 

  22. X.L. Zhong, E.W.L. Wong, M. Gupta, Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. Acta Mater. 55, 6338 (2007)

    Article  Google Scholar 

  23. H.S. Arora, H. Singh, B.K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing. Wear 303, 65–77 (2013)

    Article  Google Scholar 

  24. G.R. Argade, K. Kandasamy, S.K. Panigrahi, R.S. Mishra, Corrosion behavior of a friction stir processed rare-earth added magnesium alloy. Corros. Sci. 58, 321–326 (2012)

    Article  Google Scholar 

  25. B. Mansoor, A.K. Ghosh, Microstructure and tensile behavior of a friction stir processed magnesium alloy. Acta Mater. 60, 5079–5088 (2012)

    Article  Google Scholar 

  26. T.S. Sudarshan, X.-L. Gao, D. Ghosh, G. Subhash, Dynamic indentation response of fine-grained boron carbide. J. Am. Ceram. Soc. 90(6), 1850–1857 (2007)

    Article  Google Scholar 

  27. V. Patel, V. Badheka, A. Kumar, Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J. Mater. Process. Technol. 240, 68–76 (2017)

    Article  Google Scholar 

  28. A. Ghasemi-Kahrizsangi, S.F. Kashani-Bozorg, M. Moshref-Javadi, M. Sharififar, Friction stir processing of mild steel/Al2O3 nanocomposite: modeling and experimental studies. Metallogr. Microstruct. Anal. 4, 122–130 (2015)

    Article  Google Scholar 

  29. I. Dinaharan, E.T. Akinlabi, D.G. Hattingh, Microstructural characterization and sliding wear behavior of Cu/TiC copper matrix composites developed using friction stir processing. Metallogr. Microstruct. Anal. 7(4), 464–475 (2018)

    Article  Google Scholar 

  30. V.V. Patel, V. Badheka, A. Kumar, Influence of friction stir processed parameters on superplasticity of Al–Zn–Mg–Cu alloy. Mater. Manuf. Process. 31(12), 1573–1582 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vigneshkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneshkumar, M., Padmanaban, G. & Balasubramanian, V. Influence of Tool Tilt Angle on the Formation of Friction Stir Processing Zone in Cast Magnesium Alloy ZK60/SiCp Surface Composites. Metallogr. Microstruct. Anal. 8, 58–66 (2019). https://doi.org/10.1007/s13632-018-0507-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0507-5

Keywords

Navigation