Skip to main content
Log in

Development of a marker for detection of Xanthomonas campestris pv. campestris races 1 and 2 in Brassica oleracea

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of cruciferous crops that causes black rot disease throughout the world. At present, based on the host–pathogen interactions among differential cultivars of Brassica crops, 11 pathogenic Xcc races have been identified, but the race identification method based on host–pathogen interactions is time-consuming. However, early and rapid detection of the pathogen could reduce economic loss by allowing appropriate control measures against black rot disease to be taken more quickly. In this study, a PCR-based molecular marker has been developed for identifying the Xcc race 1 and Xcc race 2 bacterial strains together. The specificity of the marker was tested by PCR using 8 available Xcc races, X. campestris strains, and other bacteria. Upon amplification, a polymorphic band was observed in the PCR amplicon with a size of 1523 bp and 929 bp in Xcc races 1 and 2, respectively. A deletion of 594 bp conferred the specificity in Xcc race 2 compared to race 1. The identified PCR-based molecular marker clearly discriminated the Xcc race 1 and race 2 from other races when tested in artificially infected cabbage leaves. Thus, PCR-based development of an Xcc race 1- and 2-specific marker could be a valuable tool for the accurate detection of Xcc race 1 and 2 together for implementing control measures more quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afrin KS, Rahim MA, Rubel MH, Natarajan S, Song J-Y, Kim H-T, Park J-I, Nou I-S (2018) Development of race-specific molecular marker for Xanthomonas campestris pv. campestris race 3, the causal agent of black rot of crucifers. Can J Plant Sci 98:1119–1125

    Article  CAS  Google Scholar 

  • Alberto L (2015) Evaluation of resistance on cabbage varieties resistance against Xanthomonas campestris pv. campestris in Mozambique. Int J Agric Crop Sci 8:723–731

    Google Scholar 

  • Ballard E, Dietzgen R, Sly L, Gouk C, Horlock C, Fegan M (2011) Development of a Bio-PCR protocol for the detection of Xanthomonas arboricola pv. pruni. Plant Dis 95:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Berg T, Tesoriero L, Hailstones D (2005) PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol 54:416–427

    Article  CAS  Google Scholar 

  • Chen J-H, Hsieh Y-Y, Hsiau S-L, Lo T-C, Shau C-C (1999) Characterization of insertions of IS476and two newly identified insertion sequences, IS1478 and IS1479, in Xanthomonas campestris pv. campestris. J Bacteriol 181:1220–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz J, Tenreiro R, Cruz L (2017) Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J Plant Pathol 99:403–414

    Google Scholar 

  • Darling AE, Miklós I, Ragan MA (2008) Dynamics of genome rearrangement in bacterial populations. PLoS Genet 4:e1000128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2017) http://www.fao.org/home/en/. Accessed 18 Jan 2019

  • Fargier E, Manceau C (2007) Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol 56:805–818

    Article  Google Scholar 

  • Kałużna M, Pulawska J, Waleron M, Sobiczewski P (2014) The genetic characterization of Xanthomonas arboricola pv. juglandis, the causal agent of walnut blight in Poland. Plant Pathol 63:1404–1416

    Article  CAS  Google Scholar 

  • Kamoun S, Kamdar HV, Tola E, Kado CI (1992) A vascular hypersensitive response: role of the hrpK locus. Mol Plant Microbe Interact 5:22–33

    Article  CAS  Google Scholar 

  • Kim BS (1986) Testing for detection of Xanthomonas campestris pv. campestris in crucifer seeds and seed disinfection. Korean J Plant Pathol 2:96–101

    Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. Transl Res 44:301–307

    CAS  Google Scholar 

  • Liu W, Li L, Khan MA, Zhu F (2012) Popular molecular markers in bacteria. Mol Genet Microbiol Virol 27:103–107

    Article  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25

    Article  Google Scholar 

  • Raeside C, Gaffé J, Deatherage DE, Tenaillon O, Briska AM, Ptashkin RN, Cruveiller S, Médigue C, Lenski RE, Barrick JE (2014) Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli. MBio 5:e01377-01314

    Article  CAS  Google Scholar 

  • Rubel MH, Robin AHK, Natarajan S, Vicente JG, Kim H-T, Park J-I, Nou I-S (2017) Whole-genome re-alignment facilitates development of specific molecular markers for races 1 and 4 of Xanthomonas campestris pv. campestris, the cause of black rot disease in Brassica oleracea. Int J Mol Sci 18:2523

    Article  CAS  PubMed Central  Google Scholar 

  • Schaad NW, Cheong S, Tamaki S, Hatziloukas E, Panopoulos NJ (1995) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85:243–246

    Article  CAS  Google Scholar 

  • Shitikov EA, Bespyatykh JA, Ischenko DS, Alexeev DG, Karpova IY, Kostryukova ES, Isaeva YD, Nosova EY, Mokrousov IV, Vyazovaya AA (2014) Unusual large-scale chromosomal rearrangements in Mycobacterium tuberculosis Beijing B0/W148 cluster isolates. PLoS ONE 9:e84971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Raghavendra B, Rathaur PS, Singh H, Raghuwanshi R, Singh R (2014) Detection of black rot disease causing pathogen Xanthomonas campestris pv. campestris by bio-PCR from seeds and plant parts of cole crops. Seed Sci Technol 42:36–46

    Article  Google Scholar 

  • Singh D, Rathaur P, Vicente J (2016) Characterization, genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India. Plant Pathol 65:1411–1418

    Article  CAS  Google Scholar 

  • Song E-S, Kim S-Y, Noh T-H, Cho H, Chae S-C, Lee B-M (2014) PCR-based assay for rapid and specific detection of the new Xanthomonas oryzae pv. oryzae K3a race using an AFLP-derived marker. J Microbiol Biotechnol 24:732–739

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Conway J, Roberts S, Taylor J (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Wang Q, Tang P, Araki H, Tian D (2009) Genomewide association between insertions/deletions and the nucleotide diversity in bacteria. Mol Biol Evol 26:2353–2361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Center for Horticultural Seed Development (Golden Seed Project No. 213007-05-3-SB510) of the Ministry of Agriculture, Food and Rural Affairs in the Republic of Korea (MAFRA). We thank Dr Joana G. Vicente, University of Warwick, United Kingdom for providing Xanthomonas campestris pv. campestris races (1–7), Xci and Xcr isolates. Authors also thank to Dr. Pilar Soengas for giving Xcc race 8 strain. We thank the Korean Agriculture Culture Collection (KACC), Korea and the ICMP collection from New Zealand for providing isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill-Sup Nou.

Additional information

Communicated by Sung-Chur Sim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubel, M.H., Natarajan, S., Nath, U.K. et al. Development of a marker for detection of Xanthomonas campestris pv. campestris races 1 and 2 in Brassica oleracea. Hortic. Environ. Biotechnol. 60, 511–517 (2019). https://doi.org/10.1007/s13580-019-00143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-019-00143-7

Keywords

Navigation