Skip to main content

Advertisement

Log in

Assessing the genetic variation in cultivated tomatoes (Solanum lycopersicum L.) using genome-wide single nucleotide polymorphisms

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Tomato (Solanum lycopersicum L.) is an economically important vegetable crop worldwide. Recently, a high-density single nucleotide polymorphism (SNP) array was developed based on genome-wide SNPs in tomato. In this study, we genotyped a collection of 48 Korean elite tomato varieties (26 fresh market and 22 cultivated cherry) using 7,720 SNPs of this array. Out of 6,652 polymorphic SNPs (86.1%) in the entire collection, there were 6,589 SNPs with < 10% missing data. The number of polymorphic SNPs in the fresh market and cultivated cherry subpopulations were 4,733 (61.3%) and 6,087 (78.8%), respectively. To examine the genetic variation between sub-populations, the SNP genotypes of the Korean tomato germplasm were analyzed along with the previously reported data on SNPs of the 277 Solanaceae Agricultural Coordinated Project (SolCAP) varieties (109 fresh market, 27 cultivated cherry, and 141 processing). Principal component analysis, pairwise F st, and Nei’s standard genetic distance revealed genetic differentiation between these five sub-populations. Moreover, we validated another division within the Korean cherry varieties using the unweighted pair group mean algorithm (UPGMA). The genetic diversity of each sub-population was estimated based on allelic richness and expected heterozygosity. The fresh market and cultivated cherry sub-populations in the Korean tomato germplasm showed similar levels of genetic diversity as the corresponding SolCAP sub-populations. Visualization of the polymorphic information revealed genomic regions that differed between the two sub-populations in the Korean tomato germplasm. These results suggest that diversifying selection for market niches and environmental adaptation has led to allelic variation in cultivated tomatoes in Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agarwal, S. and A.V. Rao. 2000. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 163:739–744.

    CAS  Google Scholar 

  • Barrantes, W., A. Fernandez-del-Carmen, G. Lopez-Casado, M.A. Gonzalez-Sanchez, R. Fernandez-Munoz, A. Granell, and A.J. Monforte. 2014. Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Mol. Breed. 34:1817–1831.

    Article  Google Scholar 

  • Blanca, J., J. Canizares, L. Cordero, L. Pascual, M.J. Diez, and F. Nuez. 2012. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7:e48198.

  • Blanca, J., J. Montero-Pau, C. Sauvage, G. Bauchet, E. Illa, M.J. Diez, D. Francis, M. Causse, E. van der Knaap, and J. Canizares. 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16:257.

  • Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314–331.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Corrado, G., P. Piffanelli, M. Caramante, M. Coppola, and R. Rao. 2013. SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 14:835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieringer, D. and C. Schlotterer. 2003. MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3:167–169.

    Article  CAS  Google Scholar 

  • El Mousadik, A. and R.J. Petit. 1996. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L) Skeels] endemic to Morocco. Theor. Appl. Genet. 92:832–839.

    Article  PubMed  Google Scholar 

  • Gupta, P.K., S. Rustgi, and R.R. Mir. 2008. Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, J.P., S.C. Sim, K. Stoffel, A. Van Deynze, C.R. Buell, and D.M. Francis. 2012. Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. The Plant Genome 5:17–29.

    Article  CAS  Google Scholar 

  • Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586.

    Article  Google Scholar 

  • Jiménez-Gómez, J. and J. Maloof. 2009. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution. BMC Plant Biol. 9:85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, D.A., C.M. Thomas, K.E. Hammondkosack, P.J. Balintkurti, and J.D.G. Jones. 1994. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793.

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk, L.M., J. Hachey, D.R. Lynch, F. Kulcsar, G. van Rooijen, D.R. Waterer, A. Robertson, E. Kokko, R. Byers, R.J. Howard, R. Fischer, and D. Prufer. 2001. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA 98:6511–6515.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krzywinski, M.I., J.E. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, and M.A. Marra. 2009. Circos: An information aesthetic for comparative genomics. Genome Res. 19:1639–1645.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Labate, J.A. and A.M. Baldo. 2005. Tomato SNP discovery by EST mining and resequencing. Mol. Breed. 16:343–349.

    Article  CAS  Google Scholar 

  • Labate, J.A., L.D. Robertson, F.N. Wu, S.D. Tanksley, and A.M. Baldo. 2009. EST, COSII, and arbitrary gene markers give similar estimates of nucleotide diversity in cultivated tomato (Solanum lycopersicum L.). Theor. Appl. Genet. 118:1005–1014.

    Article  PubMed  CAS  Google Scholar 

  • Lin, T., G. Zhu, J. Zhang, X. Xu, Q. Yu, Z. Zheng, Z. Zhang, Y. Lun, S. Li, X. Wang, Z. Huang, J. Li, C. Zhang, T. Wang, Y. Zhang, A. Wang, Y. Zhang, K. Lin, C. Li, G. Xiong, Y. Xue, A. Mazzucato, M. Causse, Z. Fei, J. J. Giovannoni, R. T. Chetelat, D. Zamir, T. Stadler, J. Li, Z. Ye, Y. Du, and S. Huang. 2014. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46:1220–1226.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.B., S.H. Brommonschenkel, J. Chunwongse, A. Frary, M.W. Ganal, R. Spivey, T. Wu, E.D. Earle, and S.D. Tanksley. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.C., and S.D. Tanksley. 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor. Appl. Genet. 80:437–448.

    PubMed  CAS  Google Scholar 

  • Milligan, S.B., J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel, and V.M. Williamson. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park, Y.H., M.A.L. West, and D.A. St Clair. 2004. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518.

    Article  PubMed  CAS  Google Scholar 

  • Pnueli, L., L. CarmelGoren, D. Hareven, T. Gutfinger, J. Alvarez, M. Ganal, D. Zamir, and E. Lifschitz. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989.

    PubMed  CAS  Google Scholar 

  • R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Rodriguez, G.R., H.J. Kim, and E. van der Knaap. 2013. Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 111:256–264.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rohlf, F.J. 2008. NTSYSpc: Numerical taxonomy system, ver. 2.20. Exeter Publishing Ltd., Setauket, NY, USA.

    Google Scholar 

  • Ronen, G., L. Carmel-Goren, D. Zamir, and J. Hirschberg. 2000. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA 97:11102–11107.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ruggieri, V., G. Francese, A. Sacco, A. D'Alessandro, M.M. Rigano, M. Parisi, M. Milone, T. Cardi, G. Mennella, and A. Barone. 2014. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 14.

    Google Scholar 

  • Sauvage, C., V. Segura, G. Bauchet, R. Stevens, P.T. Do, Z. Nikoloski, A.R. Fernie, and M. Causse. 2014. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 165:1120–1132.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sherman, J.D. and S.M. Stack. 1992. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. 5. Tomato (Lycopersicon esculentum) karyotype and idiogram. Genome 35:354–359.

    Article  Google Scholar 

  • Sim, S., G. Durstewitz, J. Plieske, R. Wieseke, M. Ganal, A. Van Deynze, J. Hamilton, C.R. Buell, M. Causse, S. Wijeratne, and D. Francis. 2012a. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS ONE 7:e40563.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sim, S., A. Van Deynze, K. Stoffel, D. Douches, D. Zarka, M. Ganal, R. Chetelat, S.F. Hutton, J.W. Scott, R.G. Gardner, D. Panthee, M. Mutschler, J.R. Myers, and D.M. Francis. 2012b. High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE 7:e45520.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sim, S.C., M.D. Robbins, C. Chilcott, T. Zhu, and D.M. Francis. 2009. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genomics 10:10.

    Article  Google Scholar 

  • Sim, S.C., M.D. Robbins, A. Van Deynze, A.P. Michel, and D.M. Francis. 2011. Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106:927–935.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stack, S.M., S.M. Royer, L.A. Shearer, S.B. Chang, J.J. Giovannoni, D.H. Westfall, R.A. White, and L.K. Anderson. 2009. Role of fluorescence in situ hybridization in sequencing the tomato Genome. Cytogenet. Genome Res. 124:339–350.

    Article  PubMed  CAS  Google Scholar 

  • Stacklies, W., H. Redestig, M. Scholz, D. Walther, and J. Selbig. 2007. pcaMethods -a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. Devicente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovannoni, S. Grandillo, G.B. Martin, R. Messeguer, J.C. Miller, L. Miller, A.H. Paterson, O. Pineda, M.S. Roder, R.A. Wing, W. Wu, and N.D. Young. 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160.

    PubMed  CAS  PubMed Central  Google Scholar 

  • The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit tomato. Nature 485:635–641

  • The 100 Tomato Genome Sequencing Consortium, D., S. Aflitos, E. Schijlen, H. de Jong, D. de Ridder, S. Smit, R. Finkers, J. Wang, G. Zhang, N. Li, L. Mao, F. Bakker, R. Dirks, T. Breit, B. Gravendeel, H. Huits, D. Struss, R. Swanson-Wagner, H. van Leeuwen, R.C. van Ham, L. Fito, L. Guignier, M. Sevilla, P. Ellul, E. Ganko, A. Kapur, E. Reclus, B. de Geus, H. van de Geest, B. Te Lintel Hekkert, J. van Haarst, L. Smits, A. Koops, G. Sanchez-Perez, A.W. van Heusden, R. Visser, Z. Quan, J. Min, L. Liao, X. Wang, G. Wang, Z. Yue, X. Yang, N. Xu, E. Schranz, E. Smets, R. Vos, J. Rauwerda, R. Ursem, C. Schuit, M. Kerns, J. van den Berg, W. Vriezen, A. Janssen, E. Datema, T. Jahrman, F. Moquet, J. Bonnet, and S. Peters. 2014. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 80:136–148.

    Article  Google Scholar 

  • Troyanskaya, O., M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R.B. Altman. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525.

    Article  PubMed  CAS  Google Scholar 

  • Van Deynze, A., K. Stoffel, C.R. Buell, A. Kozik, J. Liu, E. van der Knaap, and D. Francis. 2007. Diversity in conserved genes in tomato. BMC Genomics 8:465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of populatoin structure. Evolution 38:1358–1370.

    Article  Google Scholar 

  • Williams, C.E. and D.A. St. Clair. 1993. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, H., N. Jiang, E. Schaffner, E.J. Stockinger, and E. van der Knaap. 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., X.D. Bai, E. Kabelka, C. Eaton, S. Kamoun, E. van der Knaap, and D. Francis. 2004. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol. Breed. 14:21–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghoon Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, SC., Kim, M., Chung, SM. et al. Assessing the genetic variation in cultivated tomatoes (Solanum lycopersicum L.) using genome-wide single nucleotide polymorphisms. Hortic. Environ. Biotechnol. 56, 800–810 (2015). https://doi.org/10.1007/s13580-015-0107-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0107-0

Additional key words

Navigation