Skip to main content
Log in

Watermelon (Citrullus lanatus) late-embryogenesis abundant group 3 protein, ClLEA3-1, responds to diverse abiotic stresses

  • Research Report
  • Tissue Culture/Biotechnology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Plants are exposed to various environmental stresses such as drought, cold, and high salinity during their sessile lifetime. The Late-Embryogenesis Abundant (LEA) proteins are involved in protection against different environmental stresses. LEA proteins have been classified into 7 groups based on sequence similarity and conserved domains. Among these groups, the functions of only group 1, 2 and 3 genes in regulating abiotic stress tolerance have been investigated. The productivity of watermelon (Citrullus lanatus), the most economically important cucurbitaceous crop, is affected by environmental stresses, but the functions of environmental stress-related genes in watermelon have not been reported yet. Therefore, abiotic and biotic stress-related research on watermelon is necessary. In this study, we selected Cl017745 (ClLEA3-1) as a representative group 3 LEA protein based on the watermelon database (http://www.icugi.org) and reported its expression patterns in response to diverse stresses and ABA treatment. Tissue-specific expression pattern of ClLEA3-1 was induced by dehydration, low-temperature, high-salinity, and abscisic acid (ABA) treatment, but expression of ClLEA3-1 was not increased by inoculation with a pathogen. Subcellular localization analysis showed that ClLEA3-1 was a cytosolic protein. Therefore, we recommend that ClLEA3-1 (Cl017745) can be used as an abiotic stress marker gene in watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ahn, C.S., J.A. Han, and H.S. Pai. 2013. Characterization of in vivo functions of Nicotiana benthamiana RabE1. Planta 237:161–172.

    Article  CAS  PubMed  Google Scholar 

  • Ahuja, I., R.C. de Vos, A.M. Bones, and R.D. Hall. 2010. Plant molecular stress responses face climate change. Trends Plant Sci. 15:664–674.

    Article  CAS  PubMed  Google Scholar 

  • Bahieldin, A., H.T. Mahfouz, H.F. Eissa, O.M. Saleh, A.M. Ramadan, I.A. Ahmed, W.F. Dyer, H.A. El-Itriby, and M.A. Madkour. 2005. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol. Plant 123:421–427.

    Article  CAS  Google Scholar 

  • Bies-Etheve, N., P. Gaubier-Comella, A. Debures, E. Lasserre, F. Jobet, M. Raynal, R. Cooke, and M. Elseny. 2008. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 67:107–124.

    Article  CAS  PubMed  Google Scholar 

  • Boyer, J.S. 1982. Plant productivity and environment. Science 218:443–448.

    Article  CAS  PubMed  Google Scholar 

  • Browne, J., A. TunnacliVe, and A. Burnell. 2002. Anhydrobiosis: Plant desiccation gene found in a nematode. Nature 416:38.

    Article  CAS  PubMed  Google Scholar 

  • Chung, E., S.Y. Kim, S.Y. Yi, and D. Choi. 2003. Capsicum annuum dehydrin, an Osmotic-Stress Gene in Hot Pepper Plants. Mol. Cells 15:327–332.

    CAS  PubMed  Google Scholar 

  • Dalal, M., D. Tayal, V. Chinnusany, and K.C. Bansal. 2009. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J. Biotechnol. 139:137–145.

    Article  CAS  PubMed  Google Scholar 

  • Du, D.L., Q.X. Zhang, T.G. Cheng, H.T. Pan, W.R. Yang, and L.D. Sun. 2013. Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol. Biol. Rep. 40:1937–194.

    Article  CAS  PubMed  Google Scholar 

  • Dure, I.L., S.C. Greenway, and G.A. Galau. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein, R., S. Gampala, and C. Rock. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaspard, E., D. Macherel, and G. Hunault. 2012. Computational and Statistical Analyses of Amino Acid Usage and Physico-Chemical Properties of the Twelve Late Embryogenesis Abundant Protein Classes. PLoS ONE 7:1–5.

    Article  Google Scholar 

  • Kim, S.J., M.Y. Ryu, and W.T. Kim. 2012. Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases, AtRDUF1 and AtRDUF2, reduces tolerance to ABA-mediated drought stress. Biochem. Biophys. Res. Commun. 420:141–147.

    Article  CAS  Google Scholar 

  • Kim, S.J. and W.T. Kim. 2013. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress. FEBS Lett. 587:2584–2590.

    Article  CAS  PubMed  Google Scholar 

  • Knight, C. D., A. Sehgal, K. Atwal, J. C. Wallace, D. J. Cove, D. Coates, R. S. Quatrano, S. Bahadur, P. G. Stockley, and A. C. Cuming. 1995. Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7: 499–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong, Q.S., J.X. Yuan, L.G. Gao, S. Zhao, W. Jiang, Y. Huang, and Z. Bie. 2014. Identification of Suitable Reference Genes for Gene Expression Normalization in qRT-PCR Analysis in Watermelon. PLoS ONE 9:e90612.

    Article  Google Scholar 

  • Liang, J., M.Q. Zhou, X. Zhou, Y.J. Jin, M. Xu, and J. Lin. 2013. JcLEA, a Novel LEA-Like Protein from Jatropha curcas, Confers a High Level of Tolerance to Dehydration and Salinity in Arabidopsis thaliana. PLoS ONE 8:e83056.

    Article  Google Scholar 

  • Liu, Y., L. Wang, X. Xing, L. Sun, J. Pan, X. Kong, M. Zhang, and D. Li. 2013. ZmLEA3, a Multifunctional Group 3 LEA Protein from Maize (Zea mays L.), is Involved in Biotic and Abiotic Stresses. Plant Cell Physiol. 54:944–959.

    Article  CAS  PubMed  Google Scholar 

  • Marina, B., O.C. Yadira, G. Alejandro, C. Francisco, and A.C. Alejandra. 2008. The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiol. 148:6–24.

    Article  Google Scholar 

  • Michaela H. and K. H. Dirk. 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118.

    Article  Google Scholar 

  • NDong, C., J. Danyluk, K.E. Wilson, T. Pocock, N.P. Huner, and F. Sarhan. 2002. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins: molecular characterization and functional analyses. Plant Physiol. 129:1368–1381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park, B.J., Z.C. Liu, A. Kanno, and T. Kameya. 2005. Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of B. napus LEA gene. Plant Sci. 169:553–558.

    Article  CAS  Google Scholar 

  • Redman, R.S., S. Freeman, D.R. Clifton, J. Morrel, G. Brown, and R.J. Rodriguez. 1999. Biochemical Analysis of Plant Protection Afforded by a Nonpathogenic Endophytic Mutant of Colletotrichum magna, Plant Physiol. 119:795–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Regina, K., J. Silvola, and P. J. Martikainen. 1999. Short-term effects of changingwater table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. GCB Bioenergy 5:183–189.

    Google Scholar 

  • Shinozaki, K., K. Yamaguchi-Shinozaki, and M. Seki. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6:410–417.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, N.U., H.J. Chung, T.L. Thomas, and M.C. Drew. 1998. Abscisic acid -dependent and -independent expression of the carrot lateembryogenesis abundant-class gene Dc3 in transgenic tobacco seedlings. Plant Physiol. 118:1181–1190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wise, M.J. 2003. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinf. 4:52.

    Article  Google Scholar 

  • Xiao, B., Y. Huang, N. Tang, and L. Xiong. 2007. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor. Appl. Genet. 115:35–46.

    Article  CAS  PubMed  Google Scholar 

  • Xu, D., X. Duan, B. Wang, B. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249–257.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye-Eun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Huh, Y.C., Ahn, YK. et al. Watermelon (Citrullus lanatus) late-embryogenesis abundant group 3 protein, ClLEA3-1, responds to diverse abiotic stresses. Hortic. Environ. Biotechnol. 56, 555–560 (2015). https://doi.org/10.1007/s13580-015-0054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0054-9

Additional key words

Navigation