Skip to main content

Advertisement

Log in

The induction of ferroptosis by KLF11/NCOA4 axis: the inhibitory role in clear cell renal cell carcinoma

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Ferroptosis is a form of cell death and has great potential application in the treatment of many cancers, including clear cell renal cell carcinoma (ccRCC). Herein, we identified the essential roles of Krüppel-like factor 11 (KLF11) in suppressing the progression of ccRCC. By analyzing mRNA expression data from the Gene Expression Omnibus (GEO) database, we found that KLF11 was a significantly downregulated gene in ccRCC tissues. The results of subsequent functional assays verified that KLF11 played an antiproliferative role in ccRCC cells and xenograft tumors. Furthermore, gene set enrichment analysis indicated that ferroptosis was involved in ccRCC development, and correlation analysis revealed that KLF11 was positively related to ferroptosis drivers. We also found that KLF11 promoted ferroptosis in ccRCC by downregulating the protein expression of ferritin, system xc (−) cystine/glutamate antiporter (xCT), and glutathione peroxidase 4 (GPX4), acting as the inhibitory factors of ferroptosis and increasing the intracellular levels of lipid reactive oxygen species (ROS). As a transcriptional regulator, KLF11 significantly increased the promoter activity of nuclear receptor coactivator 4 (NCOA4), a gene significantly downregulated in ccRCC and whose low expression is associated with poor survival. The characteristics of ccRCC cells caused by KLF11 overexpression were reversed after NCOA4 silencing. In summary, the present study suggests that KLF11 suppresses the progression of ccRCC by increasing NCOA4 transcription. Therefore, the KLF11/NCOA4 axis may serve as a novel therapeutic target for human ccRCC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available in this manuscript.

References

  1. Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol. 2021;17:245–61.

    Article  CAS  PubMed  Google Scholar 

  2. Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: mechanisms and management strategies. Mol Cancer Ther. 2018;17:1355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karlovsky P. A re-evaluation of evidence attributing the difference in cleavage rates of restriction endonuclease at different sites in the substrate to differences in Km values. Biochem J. 1986;235:611–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan Y, Guo Y, Zhang J, et al. Kruppel-like factor-11, a transcription factor involved in diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-kappaB signaling pathway. Arterioscler Thromb Vasc Biol. 2012;32:2981–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xi Z, Zhang R, Zhang F, Ma S, Feng T. KLF11 expression predicts poor prognosis in glioma patients. Int J Gen Med. 2021;14:2923–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cheng L, Shi L, Dai H. Bioinformatics analysis of potential prognostic biomarkers among Kruppel-like transcription Factors (KLFs) in breast cancer. Cancer Biomark. 2019;26:411–20.

    Article  CAS  PubMed  Google Scholar 

  7. Londero AP, Orsaria M, Viola L, et al. Survivin, sonic hedgehog, kruppel-like factors, and p53 pathway in serous ovarian cancer: an immunohistochemical study. Hum Pathol. 2022;127:92–101.

    Article  CAS  PubMed  Google Scholar 

  8. Ji Q, Li Y, Zhao Q, et al. KLF11 promotes gastric cancer invasion and migration by increasing Twist1 expression. Neoplasma. 2019;66:92–100.

    Article  CAS  PubMed  Google Scholar 

  9. Lin L, Pfender K, Ditsch N, et al. KLF11 is an independent negative prognostic factor for breast cancer from a cohort study and induces proliferation and inhibits apoptosis in vitro. Breast Cancer. 2023;30:758.

    Article  PubMed  Google Scholar 

  10. Buck A, Buchholz M, Wagner M, Adler G, Gress T, Ellenrieder V. The tumor suppressor KLF11 mediates a novel mechanism in transforming growth factor beta-induced growth inhibition that is inactivated in pancreatic cancer. Mol Cancer Res. 2006;4:861–72.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Wu J, Chen H, et al. Genome-wide CRISPR-Cas9 screen identified KLF11 as a druggable suppressor for sarcoma cancer stem cells. Sci Adv. 2021; 7.

  12. Li J, Wang C, Cheng R, et al. KLF11 promotes the progression of glioma via regulating Holliday junction recognition protein. Cell Biol Int. 2022;46:1144–55.

    Article  CAS  PubMed  Google Scholar 

  13. Liang W, Lu H, Sun J, et al. KLF11 protects against venous thrombosis via suppressing tissue factor expression. Thromb Haemost. 2022;122:777–88.

    Article  PubMed  Google Scholar 

  14. Liang W, Fan Y, Lu H, et al. KLF11 (Kruppel-Like Factor 11) inhibits arterial thrombosis via suppression of tissue factor in the vascular wall. Arterioscler Thromb Vasc Biol. 2019;39:402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li AY, McCusker MG, Russo A, et al. RET fusions in solid tumors. Cancer Treat Rev. 2019;81: 101911.

    Article  PubMed  Google Scholar 

  16. Sharifi N, Hurt EM, Thomas SB, Farrar WL. Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: implications for castration-resistant prostate cancer. Clin Cancer Res. 2008;14:6073–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitchell SH, Zhu W, Young CY. Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Res. 1999;59:5892–5.

    CAS  PubMed  Google Scholar 

  18. Kollara A, Brown TJ. Expression and function of nuclear receptor co-activator 4: evidence of a potential role independent of co-activator activity. Cell Mol Life Sci. 2012;69:3895–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gimm O. Thyroid cancer. Cancer Lett. 2001;163:143–56.

    Article  CAS  PubMed  Google Scholar 

  20. Bronte G, Ulivi P, Verlicchi A, Cravero P, Delmonte A, Crino L. Targeting RET-rearranged non-small-cell lung cancer: future prospects. Lung Cancer (Auckl). 2019;10:27–36.

    CAS  PubMed  Google Scholar 

  21. Peng Y, Li CX, Chen F, et al. Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. Am J Pathol. 2008;172:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu X, Chen F, Sahin A, et al. Distinct function of androgen receptor coactivator ARA70alpha and ARA70beta in mammary gland development, and in breast cancer. Breast Cancer Res Treat. 2011;128:391–400.

    Article  CAS  PubMed  Google Scholar 

  23. Mou Y, Wu J, Zhang Y, Abdihamid O, Duan C, Li B. Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer. 2021;21:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goldman M, Craft B, Swatloski T, et al. The UCSC cancer genomics browser: update 2013. Nucleic Acids Res. 2013;41:D949–54.

    Article  CAS  PubMed  Google Scholar 

  27. Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF transcription factors in digestive physiology and diseases. Gastroenterology. 2017;152:1845–75.

    Article  CAS  PubMed  Google Scholar 

  28. Hujie G, Zhou SH, Zhang H, et al. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/KLF11/Smads in hepatocellular carcinoma. Cancer Cell Int. 2018;18:10.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ellenrieder V, Buck A, Harth A, et al. KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Gastroenterology. 2004;127:607–20.

    Article  CAS  PubMed  Google Scholar 

  30. Li A, Mallik S, Luo H, Jia P, Lee DF, Zhao Z. H19, a long non-coding RNA, mediates transcription factors and target genes through interference of MicroRNAs in pan-cancer. Mol Ther Nucleic Acids. 2020;21:180–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao G, Chang Z, Zhao Y, et al. KLF11 protects against abdominal aortic aneurysm through inhibition of endothelial cell dysfunction. JCI Insight. 2021; 6.

  32. Viola L, Londero AP, Bertozzi S, et al. Prognostic role of kruppel-like factors 5, 9, and 11 in endometrial endometrioid cancer. Pathol Oncol Res. 2020;26:2265–72.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu KY, Tian Y, Li YX, et al. The functions and prognostic value of Kruppel-like factors in breast cancer. Cancer Cell Int. 2022;22:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017;1861:1893–900.

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, Wang C, Liu Z, et al. Ferroptosis and its multifaceted role in cancer: mechanisms and therapeutic approach. Antioxidants (Basel). 2022;11:1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172:402.

    Article  Google Scholar 

  37. Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.

    Article  CAS  PubMed  Google Scholar 

  38. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599–620.

    Article  CAS  PubMed  Google Scholar 

  39. He J, Li Z, Xia P, et al. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab. 2022;60: 101470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and neurodegeneration: is ferritinophagy the link? Mol Neurobiol. 2016;53:5542–74.

    Article  PubMed  Google Scholar 

  41. Lu Y, Qin H, Jiang B, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 2021;522:1–13.

    Article  CAS  PubMed  Google Scholar 

  42. Lin L, Mahner S, Jeschke U, Hester A. The distinct roles of transcriptional factor KLF11 in normal cell growth regulation and cancer as a mediator of TGF-beta signaling pathway. Int J Mol Sci. 2020;21:2928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cook T, Gebelein B, Mesa K, Mladek A, Urrutia R. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta-inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem. 1998;273:25929–36.

    Article  CAS  PubMed  Google Scholar 

  44. Cook T, Gebelein B, Urrutia R. Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors. Ann N Y Acad Sci. 1999;880:94–102.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Z, Spittau B, Behrendt M, Peters B, Krieglstein K. Human TIEG2/KLF11 induces oligodendroglial cell death by downregulation of Bcl-XL expression. J Neural Transm (Vienna). 2007;114:867–75.

    Article  CAS  PubMed  Google Scholar 

  46. Buttar NS, DeMars CJ, Lomberk G, et al. Distinct role of Kruppel-like factor 11 in the regulation of prostaglandin E2 biosynthesis. J Biol Chem. 2010;285:11433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsai Y, Xia C, Sun Z. The inhibitory effect of 6-gingerol on ubiquitin-specific peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro. Front Pharmacol. 2020;11: 598555.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xiu Z, Zhu Y, Han J, et al. Caryophyllene oxide induces ferritinophagy by regulating the NCOA4/FTH1/LC3 pathway in hepatocellular carcinoma. Front Pharmacol. 2022;13: 930958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fuhrmann DC, Mondorf A, Beifuss J, Jung M, Brune B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 2020;36: 101670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Santana-Codina N, Gikandi A, Mancias JD. The role of NCOA4-mediated ferritinophagy in ferroptosis. Adv Exp Med Biol. 2021;1301:41–57.

    Article  CAS  PubMed  Google Scholar 

  51. Bauckman KA, Mysorekar IU. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy. 2016;12:850–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Kong Y, Ma Y, et al. Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines. Oncogene. 2021;40:1425–39.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li H, Zhou W, Wei H, et al. Ferritinophagic flux was a driving force in determination of status of EMT, ferroptosis, and NDRG1 activation in action of mechanism of 2-pyridylhydrazone dithiocarbamate S-acetic acid. J Oncol. 2021;2021:3015710.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fang Y, Chen X, Tan Q, Zhou H, Xu J, Gu Q. Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci. 2021;7:980–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ZQZ, LFS, and GL designed and supervised the study. ZQZ, XL, and SBL conducted the experiments. The data were collected and analyzed by ZQZ, HCQ, and QPX. The manuscript was written by ZQZ and edited by LFS and GL. All the authors read and approved the final manuscript and author contribution statements.

Corresponding authors

Correspondence to Long-Feng Sun or Gang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

All animal experiments were approved by the Animal Ethical and Welfare Committee of Liaoning Cancer Hospital & Institute and conducted in compliance with the guidelines for the care and use of laboratory animals formulated by the Institutional Animal Care and Use Committee of China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2023_973_MOESM1_ESM.tif

Supplementary file1 Fig. 1 Identification and GO functional annotation of DEGs between ccRCC tissues and normal kidney tissues. (A) A volcano plot of genes in GSE100666, with criteria of |log2FC|> 1 and p < 0.05 applied to identify DEGs. (B) GO analysis of DEGs in the categories of BP, CC, and MF. The inner ring was a bar plot where the bar height indicated the significance of the term and the color indicated the z score. The outer ring displayed scatterplots of the expression levels (log2FC) for the genes in each term (TIF 1646 KB)

13577_2023_973_MOESM2_ESM.tif

Supplementary file2 Fig. 2 KEGG pathway enrichment analysis in ccRCC tissues. (A) The ranking plot of ten enriched KEGG pathways was arranged according to the net enrichment score (TIF 924 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, ZQ., Lv, X., Liu, SB. et al. The induction of ferroptosis by KLF11/NCOA4 axis: the inhibitory role in clear cell renal cell carcinoma. Human Cell 36, 2162–2178 (2023). https://doi.org/10.1007/s13577-023-00973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00973-9

Keywords

Navigation