Skip to main content

Advertisement

Log in

Cl-amidine attenuates lipopolysaccharide-induced inflammation in human gingival fibroblasts via the JNK/MAPK, NF-κB, and Nrf2 signalling pathways

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

A Correction to this article was published on 15 February 2023

This article has been updated

Abstract

Cl-amidine has been reported to have anti-inflammatory properties in a variety of diseases. However, the role of Cl-amidine in periodontal disease remains unclear. Here, the purpose of this study was to investigate the effect of Cl-amidine on lipopolysaccharide (LPS)-induced inflammation in human gingival fibroblasts (HGFs). The cytotoxic effect of Cl-amidine was measured with the Cell Counting Kit-8 (CCK-8) assay and Annexin V-FITC/PI staining. The protein levels of IL-6 and IL-8 in culture supernatants were measured with enzyme-linked immunosorbent assay (ELISA). The mRNA levels of inflammatory cytokines, TLR4 and MyD88 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression patterns of IL-6, TNF-ɑ, and IL-1β in HGFs were tested with western blot. The levels of NF-κB, MAPK, and Nrf2 pathway-related proteins were detected by western blot. Immunofluorescence (IF) staining was used to examine the nuclear translocation of NF-κB p65. Moreover, a rat gingivitis model was established to further clarify the role of Cl-amidine. Our results showed that Cl-amidine suppressed LPS-induced gingival inflammation both in vitro and in vivo. Mechanistically, Cl-amidine inhibited LPS-induced MyD88 expression, NF-κB activation, and JNK phosphorylation. Additionally, Cl-amidine upregulated Nrf2 and Ho-1 expression both with and without LPS stimulation but did not alter ROS levels or Keap1 expression. Overall, our data suggest that Cl-amidine acts as an inhibitor of LPS-induced gingival inflammation via the JNK/MAPK, NF-κB, and Nrf2 signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366:1809–20. https://doi.org/10.1016/S0140-6736(05)67728-8.

    Article  PubMed  Google Scholar 

  2. Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. J Dent Res. 2007;86:306–19. https://doi.org/10.1177/154405910708600403.

    Article  CAS  PubMed  Google Scholar 

  3. Tanabe S, Bodet C, Grenier D. Treponema denticola lipooligosaccharide activates gingival fibroblasts and upregulates inflammatory mediator production. J Cell Physiol. 2008;216:727–31. https://doi.org/10.1002/jcp.21447.

    Article  CAS  PubMed  Google Scholar 

  4. Naruishi K, Nagata T. Biological effects of interleukin-6 on gingival fibroblasts: cytokine regulation in periodontitis. J Cell Physiol. 2018;233:6393–400. https://doi.org/10.1002/jcp.26521.

    Article  CAS  PubMed  Google Scholar 

  5. Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:476068. https://doi.org/10.1155/2014/476068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang PL, Ohura K. Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and toll-like receptors. Crit Rev Oral Biol Med. 2002;13:132–42. https://doi.org/10.1177/154411130201300204.

    Article  PubMed  Google Scholar 

  7. Biron BM, Chung CS, O’Brien XM, Chen Y, Reichner JS, Ayala A. Cl-amidine prevents histone 3 citrullination and neutrophil extracellular trap formation, and improves survival in a murine sepsis model. J Innate Immun. 2017;9:22–32. https://doi.org/10.1159/000448808.

    Article  CAS  PubMed  Google Scholar 

  8. Willis VC, Gizinski AM, Banda NK, Causey CP, Knuckley B, Cordova KN, et al. N-alpha-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol. 2011;186:4396–404. https://doi.org/10.4049/jimmunol.1001620.

    Article  CAS  PubMed  Google Scholar 

  9. Chumanevich AA, Causey CP, Knuckley BA, Jones JE, Poudyal D, Chumanevich AP, et al. Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am J Physiol Gastrointest Liver Physiol. 2011;300:G929–38. https://doi.org/10.1152/ajpgi.00435.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knight JS, Zhao W, Luo W, Subramanian V, O’Dell AA, Yalavarthi S, et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest. 2013;123:2981–93. https://doi.org/10.1172/JCI67390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knight JS, Luo W, O’Dell AA, Yalavarthi S, Zhao W, Subramanian V, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res. 2014;114:947–56. https://doi.org/10.1161/CIRCRESAHA.114.303312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawaguchi H, Matsumoto I, Osada A, Kurata I, Ebe H, Tanaka Y, et al. Peptidyl arginine deiminase inhibition suppresses arthritis via decreased protein citrullination in joints and serum with the downregulation of interleukin-6. Mod Rheumatol. 2019;29:964–9. https://doi.org/10.1080/14397595.2018.1532545.

    Article  CAS  PubMed  Google Scholar 

  13. Witalison EE, Cui X, Causey CP, Thompson PR, Hofseth LJ. Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer. Oncotarget. 2015;6:36053–62. https://doi.org/10.18632/oncotarget.5937.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang T, Mei Y, Dong W, Wang J, Huang F, Wu J. Evaluation of protein arginine deiminase-4 inhibitor in TNBS- induced colitis in mice. Int Immunopharmacol. 2020;84:106583. https://doi.org/10.1016/j.intimp.2020.106583.

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Wang J, Liu X, Han Z, Aimin J, Wei Z, et al. Cl-amidine attenuates lipopolysaccharide-induced mouse mastitis by inhibiting NF-kappaB, MAPK, NLRP3 signaling pathway and neutrophils extracellular traps release. Microb Pathog. 2020;149:104530. https://doi.org/10.1016/j.micpath.2020.104530.

    Article  CAS  PubMed  Google Scholar 

  16. Siddiqui AZ, Bhatti UF, Deng Q, Biesterveld BE, Tian Y, Wu Z, et al. Cl-amidine improves survival and attenuates kidney injury in a rabbit model of endotoxic shock. Surg Infect (Larchmt). 2021;22:421–6. https://doi.org/10.1089/sur.2020.189.

    Article  PubMed  Google Scholar 

  17. Jang B, Ishigami A, Kim YS, Choi EK. The Peptidylarginine deiminase inhibitor cl-amidine suppresses inducible nitric oxide synthase expression in dendritic cells. Int J Mol Sci. 2017;18:2258. https://doi.org/10.3390/ijms18112258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jang B, Kim HW, Kim JS, Kim WS, Lee BR, Kim S, et al. Peptidylarginine deiminase inhibition impairs toll-like receptor agonist-induced functional maturation of dendritic cells, resulting in the loss of T cell-proliferative capacity: a partial mechanism with therapeutic potential in inflammatory settings. J Leukoc Biol. 2015;97:351–62. https://doi.org/10.1189/jlb.3A0314-142RR.

    Article  CAS  PubMed  Google Scholar 

  19. Shang L, Wang T, Tong D, Kang W, Liang Q, Ge S. Prolyl hydroxylases positively regulated LPS-induced inflammation in human gingival fibroblasts via TLR4/MyD88-mediated AKT/NF-kappaB and MAPK pathways. Cell Prolif. 2018;51:e12516. https://doi.org/10.1111/cpr.12516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du J, Wang Q, Wang L, Wang X, Yang P. The expression pattern of FHL2 during mouse molar development. J Mol Histol. 2012;43:289–95. https://doi.org/10.1007/s10735-012-9409-z.

    Article  CAS  PubMed  Google Scholar 

  21. Gemmell E, Marshall RI, Seymour GJ. Cytokines and prostaglandins in immune homeostasis and tissue destruction in periodontal disease. Periodontol. 2000;1997(14):112–43. https://doi.org/10.1111/j.1600-0757.1997.tb00194.x.

    Article  Google Scholar 

  22. Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5:a011247. https://doi.org/10.1101/cshperspect.a011247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45. https://doi.org/10.1038/35100529.

    Article  CAS  PubMed  Google Scholar 

  24. De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. 2015;74:181–9. https://doi.org/10.1016/j.cyto.2015.02.025.

    Article  CAS  PubMed  Google Scholar 

  25. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8:227–41. https://doi.org/10.1002/wsbm.1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651. https://doi.org/10.1101/cshperspect.a001651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A, et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem. 2003;278:36916–23. https://doi.org/10.1074/jbc.M301598200.

    Article  CAS  PubMed  Google Scholar 

  28. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733. https://doi.org/10.1146/annurev.immunol.021908.132641.

    Article  CAS  PubMed  Google Scholar 

  29. Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13:679–92. https://doi.org/10.1038/nri3495.

    Article  CAS  PubMed  Google Scholar 

  30. Moens U, Kostenko S, Sveinbjornsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes (Basel). 2013;4:101–33. https://doi.org/10.3390/genes4020101.

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Singh UK, Kini SG, Garg V, Agrawal S, Tomar PK, et al. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med Chem. 2015;7:2065–86. https://doi.org/10.4155/fmc.15.132.

    Article  CAS  PubMed  Google Scholar 

  32. Li ST, Dai Q, Zhang SX, Liu YJ, Yu QQ, Tan F, et al. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-kappaB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol Sin. 2018;39:1294–304. https://doi.org/10.1038/aps.2017.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5. https://doi.org/10.1074/jbc.R900010200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu GH, Qu J, Shen X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta. 2008;1783:713–27. https://doi.org/10.1016/j.bbamcr.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the Natural Science Foundation of Shandong Province (No. ZR2021MC126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqin Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical consent was granted from the Ethics Committee of Zibo Central Hospital for studies involving patients. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Ethical approval of the animal study was granted by the Animal Ethics Committee of Zibo Central Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, N., Sun, H. et al. Cl-amidine attenuates lipopolysaccharide-induced inflammation in human gingival fibroblasts via the JNK/MAPK, NF-κB, and Nrf2 signalling pathways. Human Cell 36, 223–233 (2023). https://doi.org/10.1007/s13577-022-00822-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00822-1

Keywords

Navigation