Skip to main content

Advertisement

Log in

The α5-nAChR/PD-L1 axis facilitates lung adenocarcinoma cell migration and invasion

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

α5 nicotinic acetylcholine receptor (α5-nAChR) is associated with the progression of smoking-related lung adenocarcinoma (LUAD), but the molecular mechanism is unclear. Programmed death ligand 1 (PD-L1) is encoded by the CD274 gene, which not only inhibits the immune system, but also plays a unique role in tumor growth and metastasis. Here, we gained important insights into the underlying mechanism between α5-nAChR and PD-L1 in LUAD progression. α5-nAChR was overexpressed in various histological subtypes, cancer stages and metastasis statuses of LUAD. The group that coexpressed α5‐nAChR and PD-L1 had a worse prognosis than the other subgroups at different stages of LUAD lymph node metastasis. The expression of α5‐nAChR and PD-L1 was associated with epithelial–mesenchymal transition (EMT) marker CDH2. In vitro, α5-nAChR mediated nicotine-induced PD-L1 expression via STAT3 and the expression of EMT markers. Downregulation of α5-nAChR and/or PD-L1 inhibited EMT marker expression, cell proliferation, migration and invasion compared to silencing α5-nAChR or PD-L1 alone in LUAD cells. Furthermore, α5-nAChR expression was associated with PD-L1 and EMT marker expression in mouse xenograft models. These results highlight that α5-nAChR mediates STAT3/PD-L1 signaling, which contributes to cell migration and invasion. Therefore, our study may reveal a new interaction between α5-nAChR and PD-L1 that is involved in tumor cell growth and progression in LUAD, which may be a promising target for NSCLC diagnosis and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm the data that has been used in this work is available on reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  2. Heron M, Anderson RN. Changes in the leading cause of death: recent patterns in heart disease and cancer mortality. NCHS Data Brief. 2016;254:1–8.

    Google Scholar 

  3. Rojewski AM, Tanner NT, Dai L, et al. Tobacco dependence predicts higher lung cancer and mortality rates and lower rates of smoking cessation in the national lung screening trial. Chest. 2018;154:110–8. https://doi.org/10.1016/j.chest.2018.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Friedlaender A, Addeo A, Russo A, Gregorc V, Cortinovis D, Rolfo CD. Targeted therapies in early stage NSCLC: hype or hope? Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176329.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54. https://doi.org/10.1038/nature25183.

    Article  CAS  PubMed  Google Scholar 

  6. Kim BN, Ahn DH, Kang N, et al. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci Rep. 2020;10:10597. https://doi.org/10.1038/s41598-020-67325-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 2021;22:e358–68. https://doi.org/10.1016/S1470-2045(21)00343-0.

    Article  CAS  PubMed  Google Scholar 

  8. Lam DCL, Girard L, Ramirez R, et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res. 2007;67(10):4638–47.

    Article  CAS  Google Scholar 

  9. Cheng W-L, Chen K-Y, Lee K-Y, Feng P-H, Wu S-M. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J Cancer. 2020;11:1125–40. https://doi.org/10.7150/jca.36359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362:2295–303. https://doi.org/10.1056/NEJMra0809890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou W, Zhu W, Tong X, et al. CHRNA5 rs16969968 polymorphism is associated with lung cancer risk: a meta-analysis. Clin Respir J. 2020;14:505–13. https://doi.org/10.1111/crj.13165.

    Article  CAS  PubMed  Google Scholar 

  12. Yao C, Joehanes R, Wilson R, et al. Epigenome-wide association study of whole blood gene expression in framingham heart study participants provides molecular insight into the potential role of CHRNA5 in cigarette smoking-related lung diseases. Clin Epigenetics. 2021;13:60. https://doi.org/10.1186/s13148-021-01041-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hung RJ, McKay JD, Gaborieau V, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–7. https://doi.org/10.1038/nature06885.

    Article  CAS  PubMed  Google Scholar 

  14. Wen L, Jiang K, Yuan W, Cui W, Li MD. Contribution of variants in CHRNA5/A3/B4 gene cluster on chromosome 15 to tobacco smoking: from genetic association to mechanism. Mol Neurobiol. 2016;53:472–84. https://doi.org/10.1007/s12035-014-8997-x.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Q, Jia Y, Pan P, et al. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer. Carcinogenesis. 2022. https://doi.org/10.1093/carcin/bgac003.

    Article  PubMed  Google Scholar 

  16. Chen X, Jia Y, Zhang Y, Zhou D, Sun H, Ma X. α5-nAChR contributes to epithelial-mesenchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. J Cell Mol Med. 2020;24:2497–506. https://doi.org/10.1111/jcmm.14941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Jia Y, Li P, et al. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J Genet Genomics. 2017;44:355–62. https://doi.org/10.1016/j.jgg.2017.03.003.

    Article  PubMed  Google Scholar 

  18. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.

    Article  CAS  Google Scholar 

  19. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48:434–52. https://doi.org/10.1016/j.immuni.2018.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8.

    Article  CAS  Google Scholar 

  21. Mi Y, Han J, Zhu J, Jin T. Role of the PD-1/PD-L1 signaling in multiple sclerosis and experimental autoimmune encephalomyelitis: recent insights and future directions. Mol Neurobiol. 2021;58:6249–71. https://doi.org/10.1007/s12035-021-02495-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang M, Li G, Wang Y, et al. PD-L1 expression in lung cancer and its correlation with driver mutations: a meta-analysis. Sci Rep. 2017;7:10255. https://doi.org/10.1038/s41598-017-10925-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li JJN, Karim K, Sung M, et al. Tobacco exposure and immunotherapy response in PD-L1 positive lung cancer patients. Lung Cancer. 2020;150:159–63. https://doi.org/10.1016/j.lungcan.2020.10.023.

    Article  PubMed  Google Scholar 

  24. Li B, Huang X, Fu L. Impact of smoking on efficacy of PD-1/PD-L1 inhibitors in non-small cell lung cancer patients: a meta-analysis. Onco Targets Ther. 2018;11:3691–6. https://doi.org/10.2147/OTT.S156421.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zaleskis G, Pasukoniene V, Characiejus D, Urbonas V. Do the benefits of being a smoker hint at the existence of PD-1/PD-L1 sensitizers for patients on single-agent immunotherapy? J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2021-003191.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dong P, Xiong Y, Yue J, Hanley SJB, Watari H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol. 2018;8:386. https://doi.org/10.3389/fonc.2018.00386.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nguyen HD, Liao Y-C, Ho Y-S, et al. The α9 nicotinic acetylcholine receptor mediates nicotine-induced PD-L1 expression and regulates melanoma cell proliferation and migration. Cancers. 2019. https://doi.org/10.3390/cancers11121991.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kwok HH, Gao B, Chan KH, Ip MSM, Minna JD, Lam DCL. Nicotinic acetylcholine receptor subunit α7 mediates cigarette smoke-induced PD-L1 expression in human bronchial epithelial cells. Cancers. 2021. https://doi.org/10.3390/cancers13215345.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ma X, Jia Y, Zu S, et al. α5 Nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer. Toxicol Appl Pharmacol. 2014;278:172–9. https://doi.org/10.1016/j.taap.2014.04.023.

    Article  CAS  PubMed  Google Scholar 

  30. Sun H-J, Jia Y-F, Ma X-L. α5 nicotinic acetylcholine receptor contributes to nicotine-induced lung cancer development and progression. Front Pharmacol. 2017;8:573. https://doi.org/10.3389/fphar.2017.00573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao L, Wang X, Li S, et al. PD-L1 is a prognostic biomarker in resected NSCLC patients with moderate/high smoking history and elevated serum SCCA level. J Cancer. 2017;8:3251–60. https://doi.org/10.7150/jca.21118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bracken-Clarke D, Kapoor D, Baird AM, et al. Vaping and lung cancer: a review of current data and recommendations. Lung Cancer. 2021;153:11–20. https://doi.org/10.1016/j.lungcan.2020.12.030.

    Article  PubMed  Google Scholar 

  33. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32:605–44. https://doi.org/10.1016/j.ccm.2011.09.001.

    Article  PubMed  Google Scholar 

  34. Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–22.

    Article  CAS  Google Scholar 

  35. Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet. 2010;42:436–40. https://doi.org/10.1038/ng.572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schaal CM, Bora-Singhal N, Kumar DM, Chellappan SP. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer. 2018;17:149. https://doi.org/10.1186/s12943-018-0901-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Qian J, Sun Z, Zhangsun D, Luo S. Cervical cancer correlates with the differential expression of nicotinic acetylcholine receptors and reveals therapeutic targets. Mar Drugs. 2019. https://doi.org/10.3390/md17050256.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chien CY, Chen YC, Hsu CC, et al. YAP-dependent BiP induction is involved in nicotine-mediated oral cancer malignancy. Cells. 2021. https://doi.org/10.3390/cells10082080.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Wang H, Yao H, Li C, Fang J-Y, Xu J. Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol. 2018;9:536. https://doi.org/10.3389/fphar.2018.00536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol. 2019;234:1313–25. https://doi.org/10.1002/jcp.27172.

    Article  CAS  PubMed  Google Scholar 

  41. Wu Y, Chen W, Xu ZP, Gu W. PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition. Front Immunol. 2019;10:2022. https://doi.org/10.3389/fimmu.2019.02022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021;14:10. https://doi.org/10.1186/s13045-020-01027-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Du W, Zhu J, Zeng Y, et al. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ. 2021;28:1284–300. https://doi.org/10.1038/s41418-020-00651-5.

    Article  CAS  PubMed  Google Scholar 

  44. Sasidharan Nair V, Toor SM, Ali BR, Elkord E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin Ther Targets. 2018;22:547–57. https://doi.org/10.1080/14728222.2018.1471137.

    Article  PubMed  Google Scholar 

  45. Song TL, Nairismägi M-L, Laurensia Y, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood. 2018;132:1146–58. https://doi.org/10.1182/blood-2018-01-829424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the [Natural Science Foundation of Shandong Province] [Grant (ZR2021MH322 and ZR2018MH021)]; [National Natural Science Foundation of China] (Grant No: 3197072).

Author information

Authors and Affiliations

Authors

Contributions

PZ and XM wrote the first draft of the manuscript. PZ and XM contributed to the conception and design of the research. PZ, GK, YJ, CG, HF, XL, YJ, LZ and XM contributed to the experiment and interpretation of the data. XM revised the paper. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Xiaoli Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

All mice experimental procedures were performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011) and approved by the Ethics Committee of Central Hospital Affiliated to Shandong First Medical University.

Consent for publication

The authors agree with the paper’s content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Kang, G., Jiao, Y. et al. The α5-nAChR/PD-L1 axis facilitates lung adenocarcinoma cell migration and invasion. Human Cell 35, 1207–1218 (2022). https://doi.org/10.1007/s13577-022-00709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00709-1

Keywords

Navigation