Skip to main content
Log in

Preparation, characterization, and antibacterial properties of hybrid nanofibrous scaffolds for cutaneous tissue engineering

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Since polymeric nanofibrous scaffolds have been widely used in tissue regeneration, the risk of bacterial infections should not be neglected. In the present work, poly-caprolactone-silk fibroin-soluble eggshell membrane-silver nanoparticles (PCL-SF-SESM-AgNPs) and caprolactone-silk fibroin-soluble eggshell membrane-chitosan (PCL-SF-SESM-CS) scaffolds were fabricated via the electrospinning method for cutaneous regeneration. The composition, morphology, hydrophilicity, and mechanical features of prepared scaffolds were evaluated using Fourier transform infrared (FT-IR), scanning electron microscope (SEM), tensile, and water contact angle tests. The existence of AgNPs in PCL/SF/SESM/AgNPs nanofibers was confirmed by UV–visible, Transmission electron microscopes (TEM), and X-Ray Diffraction (XRD) patterns. Besides, cell adhesion, proliferation, and differentiation process of cutaneous progenitor cells, namely basal cell carcinoma (BCCs), toward keratinocyte-like cells were evaluated using MTT analysis, DAPI, Immunofluorescence imaging (IF), and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) assay. The results indicated that prepared nanofibrous mats are appropriate candidates for cutaneous regeneration and in advanced in vivo applications could be used. Lastly, the antimicrobial potential of prepared nanofibers against microorganisms such as E. coli, S. aureus, and C. Albicans was analyzed using the disc diffusion method. Results revealed that chitosan-containing nanofibrous scaffolds indicate inhibition against S. aureus, but PCL-SF-SESM as control group not. In addition, against C. albicans any antifungal activity was not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sun A, He X, Li L, Li T, Liu Q, Zhou X, et al. An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration. NPG Asia Mater. 2020;12:1–11.

    Article  CAS  Google Scholar 

  2. Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Investig Dermatol. 2007;127:1018–29.

    Article  CAS  PubMed  Google Scholar 

  3. Kinikoglu B. Electrospinning materials for skin tissue engineering. Intell Nanomater. 2016;2:1–20.

    Google Scholar 

  4. Levengood SL, Erickson AE, Chang F-C, Zhang M. Chitosan–poly (caprolactone) nanofibers for skin repair. J Mater Chem B. 2017;5:1822–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21.

    Article  CAS  Google Scholar 

  6. Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, et al. Silver nanomaterials for wound dressing applications. Pharmaceutics. 2020;12:821.

    Article  CAS  PubMed Central  Google Scholar 

  7. Vatansever HÇ, Meriçboyu AE. Production of antibacterial polyvinylpyrrolidone nanofibers containing silver nanoparticles via electrospinning method. MANAS J Eng. 2019;7(1):13–23.

  8. Ma X, Wu G, Dai F, Li D, Li H, Zhang L, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polymers. 2021;251:117058.

    Article  CAS  Google Scholar 

  9. Fahimirad S, Abtahi H, Satei P, Ghaznavi-Rad E, Moslehi M, Ganji A. Wound healing performance of PCL/Chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr Polymers. 2021;259:117640.

    Article  CAS  Google Scholar 

  10. He J, Liang Y, Shi M, Guo B. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly (ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem Eng J. 2020;385:123464.

    Article  CAS  Google Scholar 

  11. Yang Y-N, Lu K-Y, Wang P, Ho Y-C, Tsai M-L, Mi F-L. Development of bacterial cellulose/chitin multi-nanofibers based smart films containing natural active microspheres and nanoparticles formed in situ. Carbohydr Polymers. 2020;228:115370.

    Article  CAS  Google Scholar 

  12. Vineis C, Varesano A. Natural polymer-based electrospun fibers for antibacterial uses. In: Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices. Elsevier; 2018. p. 275–94.

  13. Cai Z-x, Mo X-m, Zhang K-h, Fan L-p, Yin A-l, He C-l, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci. 2010;11:3529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baranowska-Korczyc A, Warowicka A, Jasiurkowska-Delaporte M, Grześkowiak B, Jarek M, Maciejewska BM, et al. Antimicrobial electrospun poly (ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Adv. 2016;6:19647–56.

    Article  CAS  Google Scholar 

  15. Bhullar SK, Rana D, Lekesiz H, Bedeloglu AC, Ko J, Cho Y, et al. Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater Sci Eng C. 2017;81:334–40.

    Article  CAS  Google Scholar 

  16. Choi JI, Kim MS, Chung GY, Shin HS. Spirulina extract-impregnated alginate-PCL nanofiber wound dressing for skin regeneration. Biotechnol Bioprocess Eng. 2017;22:679–85.

    Article  CAS  Google Scholar 

  17. Xue R, Qian Y, Li L, Yao G, Yang L, Sun Y. Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells. Stem Cell Res Ther. 2017;8:148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim HJ, Kim JH, Jun KW, Kim JH, Seung WC, Kwon OH, et al. Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv Energy Mater. 2016;6:1502329.

    Article  CAS  Google Scholar 

  19. Türkkan S, Atila D, Akdağ A, Tezcaner A. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering. J Biomed Mater Res B Appl Biomater. 2018;106:2625–35.

    Article  PubMed  CAS  Google Scholar 

  20. Amiraliyan N, Nouri M, Kish MH. Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym Sci Ser A. 2010;52:407–12.

    Article  Google Scholar 

  21. Gokila S, Gomathi T, Vijayalakshmi K, Sukumaran A, Sudha P. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. Int J Biol Macromol. 2018;120:876–85.

    Article  CAS  Google Scholar 

  22. Kim SH, Nam YS, Lee TS, Park WH. Silk fibroin nanofiber. Electrospinning, properties, and structure. Polymer J. 2003;35:185–90.

    Article  CAS  Google Scholar 

  23. Wang Q, Jian M, Wang C, Zhang Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Func Mater. 2017;27:1605657.

    Article  CAS  Google Scholar 

  24. Wang Y, Kim H-J, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27:6064–82.

    Article  CAS  PubMed  Google Scholar 

  25. Ali S, Khatri Z, Oh KW, Kim I-S, Kim SH. Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning. Macromol Res. 2014;22:562–8.

    Article  CAS  Google Scholar 

  26. Chen L, Kang J, Sukigara S. Preparation and characterization of polyurethane/soluble eggshell membrane nanofibers. Bio-Med Mater Eng. 2014;24:1979–89.

    Article  CAS  Google Scholar 

  27. Jia J, Guo Z, Yu J, Duan Y. A new candidate for guided tissue regeneration: biomimetic eggshell membrane. J Med Hypotheses Ideas. 2011;5:20.

    CAS  Google Scholar 

  28. Kim GH, Min T, Park SA, Kim WD. Coaxially electrospun micro/nanofibrous poly (ε-caprolactone)/eggshell-protein scaffold. Bioinspir Biomim. 2008;3:016006.

    Article  PubMed  CAS  Google Scholar 

  29. Sah MK, Rath SN. Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater Sci Eng C. 2016;67:807–21.

    Article  CAS  Google Scholar 

  30. Yi F, Guo ZX, Hu P, Fang ZX, Yu J, Li Q. Mimetics of eggshell membrane protein fibers by electrospinning. Macromol Rapid Commun. 2004;25:1038–43.

    Article  CAS  Google Scholar 

  31. Yi F, Yu J, Guo ZX, Zhang LX, Li Q. Natural bioactive material: a preparation of soluble eggshell membrane protein. Macromol Biosci. 2003;3:234–7.

    Article  CAS  Google Scholar 

  32. Mohammadzadeh L, Rahbarghazi R, Salehi R, Mahkam M. A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering. J Biol Eng. 2019;13:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ledwith DM, Whelan AM, Kelly JM. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem. 2007;17:2459–64.

    Article  CAS  Google Scholar 

  34. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008;32:388–97.

    Article  CAS  PubMed  Google Scholar 

  35. Dulnik J, Denis P, Sajkiewicz P, Kołbuk D, Choińska E. Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polym Degrad Stab. 2016;130:10–21.

    Article  CAS  Google Scholar 

  36. Silva SS, Popa EG, Gomes ME, Cerqueira M, Marques A, Caridade S, et al. An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomater. 2013;9:6790–7.

    Article  CAS  PubMed  Google Scholar 

  37. Tao G, Liu L, Wang Y, Chang H, Zhao P, Zuo H, et al. Characterization of silver nanoparticle in situ synthesis on porous sericin gel for antibacterial application. J Nanomater. 2016;2016 (2016):1–8.

    Google Scholar 

  38. Xu X, Zhou M. Antimicrobial gelatin nanofibers containing silver nanoparticles. Fibers Polymers. 2008;9:685–90.

    Article  CAS  Google Scholar 

  39. Amirnia M, Mokhtari F, Rezabakhsh A, Nabat E, Khodaiani E, Khalilzadeh S, et al. Cupressus sempervirens extract inhibited human basal cell carcinoma tumorigenesis, local invasion, and angiogenic property. Comp Clin Pathol. 2017;26:203–11.

    Article  CAS  Google Scholar 

  40. Hokmabad VR, Davaran S, Aghazadeh M, Alizadeh E, Salehi R, Ramazani A. A comparison of the effects of silica and hydroxyapatite nanoparticles on poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone)/chitosan Nanofibrous scaffolds for bone tissue engineering. Tissue Eng Regen Med. 2018;15:735–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dubey P, Bhushan B, Sachdev A, Matai I, Uday Kumar S, Gopinath P. Silver-nanoparticle-incorporated composite nanofibers for potential wound-dressing applications. J Appl Polymer Sci. 2015. https://doi.org/10.1002/app.42473.

    Article  Google Scholar 

  42. Chen J-P, Chen S-H, Lai G-J. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett. 2012;7:170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mehrabani MG, Karimian R, Mehramouz B, Rahimi M, Kafil HS. Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol. 2018;114:961–71.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Y, Tang R-C. Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract. J Photochem Photobiol, B. 2018;178:463–71.

    Article  CAS  Google Scholar 

  45. Yang X, Chen X, Wang H. Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds. Biomacromol. 2009;10:2772–8.

    Article  CAS  Google Scholar 

  46. Qi Q-L, Li Q, Lu J-W, Guo Z-X, Yu J. Preparation and characterization of soluble eggshell membrane protein/chitosan blend films. Chin J Polymer Sci. 2009;27:387–92.

    Article  CAS  Google Scholar 

  47. Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A. 2008;14:1787–97.

    Article  CAS  PubMed  Google Scholar 

  48. Guha Ray P, Pal P, Srivas PK, Basak P, Roy S, Dhara S. Surface modification of eggshell membrane with electrospun chitosan/polycaprolactone nanofibers for enhanced dermal wound healing. ACS Appl Bio Mater. 2018;1:985–98.

    Article  CAS  PubMed  Google Scholar 

  49. Pant B, Park M, Park S-J. One-step synthesis of silver nanoparticles embedded polyurethane nano-fiber/net structured membrane as an effective antibacterial medium. Polymers. 2019;11:1185.

    Article  CAS  PubMed Central  Google Scholar 

  50. Kazemi L, Rahbarghazi R, Salehi R, Abedelahi A, Niari SA, Karimipour M, et al. Superior synaptogenic effect of electrospun PLGA-PEG nanofibers versus PLGA nanofibers on human neural SH-SY5Y cells in a three-dimensional culture system. J Mol Neurosci. 2020. https://doi.org/10.1007/s12031-020-01596-7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant [no: 94/38] from the Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.

Funding

This study was financially supported by a grant [no: 94/38] from the Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roya Salehi or Reza Rahbarghazi.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, L., Mahkam, M., Barzegari, A. et al. Preparation, characterization, and antibacterial properties of hybrid nanofibrous scaffolds for cutaneous tissue engineering. Human Cell 34, 1682–1696 (2021). https://doi.org/10.1007/s13577-021-00588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00588-y

Keywords

Navigation