Skip to main content
Log in

Circular RNA circ-CHI3L1.2 modulates cisplatin resistance of osteosarcoma cells via the miR-340-5p/LPAATβ axis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Resistance to chemotherapy drugs is a major factor affecting the surgical outcome and prognosis of osteosarcoma patients. Circular RNAs (circRNAs) play an important role in tumor resistance to chemotherapy. In the present study, we aimed to investigate the role and mechanism of circRNA circ-chitinase 3-like 1.2 (CHI3L1.2) in resistance to cisplatin chemotherapy in osteosarcoma. We found that circ-CHI3L1.2 levels were higher in cisplatin-resistant cells than in their parent cells. circ-CHI3L1.2 knockdown decreased the half-maximal inhibitory concentration (IC50) of cisplatin and the expression levels of P-glycoprotein (P-gp), multidrug-resistance protein 1 (MRP1), and glutathione-S-transferase Pi1 (GSTP1), and promoted apoptosis of cisplatin-resistant osteosarcoma cells. In addition, circ-CHI3L1.2 knockdown induced mesenchymal to epithelial transition (MET) and suppressed cell migration and invasion. The competitive endogenous RNA (ceRNA) mechanism indicated that circ-CHI3L1.2 targets the micro-RNA (miR)-340-5p-lysophosphatidic acid acyltransferase β (LPAATβ) axis, and inhibition of miR-340-5p alleviates the effect of circ-CHI3L1.2 knockdown. In conclusion, circ-CHI3L1.2 levels were increased in cisplatin-resistant osteosarcoma cells and circ-CHI3L1.2 knockdown sensitized cisplatin-resistant osteosarcoma cells to cisplatin through the miR-340-5p-LPAATβ axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

circRNA:

Circular RNA

qRT-PCR:

Quantitative reverse transcription PCR

ceRNA:

Competitive endogenous RNA

siRNA:

Small interfering RNA

miR-NC:

Negative control miRNA

CCK8:

Cell counting Kit-8

IC50:

Inhibitory concentration 50

GSTs:

Glutathione S-transferases

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    PubMed  Google Scholar 

  2. Robl B, Pauli C, Botter SM, Bode-Lesniewska B, Fuchs B. Prognostic value of tumor suppressors in osteosarcoma before and after neoadjuvant chemotherapy. BMC Cancer. 2015;15:379. https://doi.org/10.1186/s12885-015-1397-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther. 2018;18(1):39–50. https://doi.org/10.1080/14737140.2018.1413939.

    Article  CAS  PubMed  Google Scholar 

  4. Sakamoto A, Iwamoto Y. Current status and perspectives regarding the treatment of osteo-sarcoma: chemotherapy. Rev Recent Clin Trials. 2008;3(3):228–31.

    Article  CAS  Google Scholar 

  5. Geng H, Brennan S, Milne TA, Chen WY, Li Y, Hurtz C, et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2012;2(11):1004–23.

    Article  CAS  Google Scholar 

  6. Lindner K, Eichelmann AK, Matuszcak C, Hussey DJ, Haier J, Hummel R. Complex Epigenetic Regulation of Chemotherapy Resistance and Biohlogy in Esophageal Squamous Cell Carcinoma via MicroRNAs. Int J Mol Sci. 2018;19(2):499.

    Article  Google Scholar 

  7. Segal-Bendirdjian E, Jacquemin-Sablon A. Cisplatin resistance in a murine leukemia cell line associated with defect of apoptosis. Bull Cancer. 1996;83(5):371–8.

    CAS  PubMed  Google Scholar 

  8. Suzuki H, Maruyama R, Yamamoto E, Niinuma T, Kai M. Relationship between noncoding RNA dysregulation and epigenetic mechanisms in cancer. Adv Exp Med Biol. 2016;927:109–35. https://doi.org/10.1007/978-981-10-1498-7_4.

    Article  CAS  PubMed  Google Scholar 

  9. Xin Z, Ma Q, Ren S, Wang G, Li F. The understanding of circular RNAs as special triggers in carcinogenesis. Brief Funct Genomics. 2017;16(2):80–6. https://doi.org/10.1093/bfgp/elw001.

    Article  CAS  PubMed  Google Scholar 

  10. Bolha L, Ravnik-Glavač M, Glavač D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers. Int J Genom. 2017;2017:6218353. https://doi.org/10.1155/2017/6218353.

    Article  CAS  Google Scholar 

  11. Ji W, Qiu C, Wang M, Mao N, Wu S, Dai Y. Hsa_circ_0001649: a circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun. 2018;497(1):122–6.

    Article  CAS  Google Scholar 

  12. Zhang S, Zeng X, Ding T, Guo L, Li Y, Ou S, et al. Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep. 2018;8(1):2878. https://doi.org/10.1038/s41598-018-21300-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao D, Zhang X, Liu B, Meng D, Fang K, Guo Z, et al. Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics. 2017;9(9):1175–88.

    Article  CAS  Google Scholar 

  14. Xiong W, Ai YQ, Li YF, Ye Q, Chen ZT, Qin JY, et al. Microarray analysis of circular RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Biomed Res Int. 2017;8421614(10):1.

    Google Scholar 

  15. Ji Q, Zhang C, Sun X, Li Q. Circular RNAs function as competing endogenous RNAs in multiple types of cancer. Oncol Lett. 2018;15(1):23–30.

    PubMed  Google Scholar 

  16. Song L, Duan P, Gan Y, Li P, Zhao C, Xu J, et al. Silencing LPAATbeta inhibits tumor growth of cisplatin-resistant human osteosarcoma in vivo and in vitro. Int J Oncol. 2017;50(2):535–44. https://doi.org/10.3892/ijo.2016.3820.

    Article  CAS  PubMed  Google Scholar 

  17. Song L, Zhou Z, Gan Y, Li P, Xu Y, Zhang Z, et al. Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATbeta/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. J Cell Biochem. 2019;120(6):9656–66. https://doi.org/10.1002/jcb.28244.

    Article  CAS  PubMed  Google Scholar 

  18. Song L, Duan P, Gan Y, Li P, Zhao C, Xu J, et al. MicroRNA-340-5p modulates cisplatin resistance by targeting LPAATbeta in osteosarcoma. Braz J Med Biol Res. 2017;50(5): e6359. https://doi.org/10.1590/1414-431x20176359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phatak P, Donahue J. Biotinylated micro-RNA pull down assay for identifying miRNA targets. Bio-Protoc. 2017. https://doi.org/10.21769/BioProtoc.2253.

    Article  Google Scholar 

  20. Liu Y-C, Li J-R, Sun C-H, Andrews E, Chao R-F, Lin F-M, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 2016;44(D1):D209–15. https://doi.org/10.1093/nar/gkv940.

    Article  CAS  PubMed  Google Scholar 

  21. Muriithi W, Macharia LW, Heming CP, Echevarria JL, Nyachieo A, Filho PN, et al. ABC transporters and the hallmarks of cancer: roles in cancer aggressiveness beyond multidrug resistance. Cancer Biol Med. 2020;17(2):253–69. https://doi.org/10.20892/j.issn.2095-3941.2019.0284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol. 2019;1141:549–80. https://doi.org/10.1007/978-981-13-7647-4_12.

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updates. 2016;26:1–9. https://doi.org/10.1016/j.drup.2016.03.001.

    Article  Google Scholar 

  24. Chatterjee A, Gupta S. The multifaceted role of glutathione S-transferases in cancer. Cancer Lett. 2018;433:33–42. https://doi.org/10.1016/j.canlet.2018.06.028.

    Article  CAS  PubMed  Google Scholar 

  25. Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci. 2021;11(1):94. https://doi.org/10.1186/s13578-021-00600-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39(3):305–18. https://doi.org/10.1080/00313020701329914.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Clinical Science Foundation of Army Medical University (no. 2018XLC3018).

Author information

Authors and Affiliations

Authors

Contributions

ZZ and QZ participated in the design of the study, most experiment, and writing the draft manuscript. FL and RZ carried out the statistical analysis. J-zX and JX were involved in the cell culture. FD and LS participated in the design of the study and the revision of draft manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fei Dai or Lei Song.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, Q., Luo, F. et al. Circular RNA circ-CHI3L1.2 modulates cisplatin resistance of osteosarcoma cells via the miR-340-5p/LPAATβ axis. Human Cell 34, 1558–1568 (2021). https://doi.org/10.1007/s13577-021-00564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00564-6

Keywords

Navigation