Skip to main content
Log in

Evaluation of HepaRG cells for the assessment of indirect drug-induced hepatotoxicity using INH as a model substance

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

HepaRG cells are widely used as an in vitro model to assess drug-induced hepatotoxicity. However, only few studies exist so far regarding their suitability to detect the effects of drugs requiring a preceding activation via the cytochrome P450 (CYP) system. A prototypic substance is the anti-tuberculosis agent INH, which is metabolized into N-acetylhydrazine, which then triggers hepatotoxicity. Therefore, the aim of the present study was to test if this effect can also be detected in HepaRG cells and if it can be counteracted by the known hepatoprotectant silibinin. For this purpose, differentiated HepaRG cells were treated with increasing concentrations of INH (0.1–100 mM) or 10 mM INH plus escalating concentrations of silibinin (1–100 µM). After 48 h of treatment, cell morphology and parameters indicating cell vitality, oxidative stress, and liver cell function were assessed. High concentrations of INH led to severe histopathological changes, reduced cell vitality and glutathione content, increased LDH and ASAT release into the medium, enhanced lipid peroxidation, and elevated cleaved caspase-3 expression. Additionally, glycogen depletion and reduced biotransformation capacity were seen at high INH concentrations, whereas at low concentrations an induction of biotransformation enzymes was noticed. Silibinin caused clear-cut protective effects, but with few parameters INH toxicity was even aggravated, most probably due to increased metabolization of INH into its toxic metabolite. In conclusion, HepaRG cells are excellently suited to evaluate the effects of substances requiring prior toxification via the CYP system, such as INH. They additionally enable the identification of complex substance interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASAT:

Aspartate transaminase

CDNB:

1-Chloro-2,4-dinitrobenzene

CYP:

Cytochrome P450

DMSO:

Dimethylsulfoxide

ECOD:

Ethoxycoumarin-O-deethylation

EROD:

Ethoxyresorufin-O-deethylation

GSH:

(Reduced) glutathione

GST:

Glutathione-S-transferase

INH:

Isoniazid

LDH:

Lactate dehydrogenase

LPO:

Lipid peroxidation products

NAT:

N-Acetyltransferase

PHH:

Primary human hepatocytes

PNPH:

p-Nitrophenol hydroxylase

References

  1. Groeneberg DA, Grosse-Siestrup C, Fischer A. In vitro models to study hepatotoxicity. Toxicol Pathol. 2002;30:394–9.

    Article  Google Scholar 

  2. Guillouzo A. Liver cell models in in vitro toxicology. Environ Health Perspect. 1998;106(Suppl 2):511–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guillouzo A, Guguen-Guillouzo C. Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol. 2008;4:1279–94.

    Article  CAS  PubMed  Google Scholar 

  4. Soldatow VY, LeCluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res. 2013;2:23–39.

    Article  CAS  Google Scholar 

  5. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23.

    CAS  PubMed  Google Scholar 

  6. Snawder JE, Lipscomb JC. Interindividual variance of cytochrome P450 forms in human hepatic microsomes: correlation of individual forms with xenobiotic metabolism and implications in risk assessment. Regul Toxicol Pharmacol. 2000;32:200–9.

    Article  CAS  PubMed  Google Scholar 

  7. LeCluyse EL. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci. 2001;13:343–68.

    Article  CAS  PubMed  Google Scholar 

  8. Castell JV, Jover R, Martinez-Jimenez CP, Gomez-Lechon MJ. Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol. 2006;2:183–212.

    Article  CAS  PubMed  Google Scholar 

  9. Guo L, Dial S, Shi L, Branham W, Liu J, Fang JL, Green B, Deng H, Kaput J, Ning B. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos. 2011;39:528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donato MT, Jover R, Gomez-Lechon MJ. Hepatic cell lines for drug hepatotoxicity testing: limitations and strategies to upgrade their metabolic competence by gene engineering. Curr Drug Metab. 2013;14:946–68.

    Article  CAS  PubMed  Google Scholar 

  11. Knasmuller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of the knowledge. Toxicology. 2004;198:315–28.

    Article  CAS  PubMed  Google Scholar 

  12. Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F, Guguen-Guillouzo C, Guillouzo A. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos. 2006;34:75–83.

    Article  CAS  PubMed  Google Scholar 

  13. Lubberstedt M, Muller-Vieira U, Mayer M, Biemel KM, Knospel F, Knobeloch D, Nussler AK, Gerlach JC, Zeilinger K. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J Pharmacol Toxicol Methods. 2011;63:59–68.

    Article  PubMed  Google Scholar 

  14. Tomida T, Okamura H, Satsukawa M, Yokoi T. Multiparametric assay using HepaRG cells for predicting drug-induced liver injury. Toxicol Lett. 2015;236:16–24.

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Geng X, Wang J, Miao Y, Lu Y, Li B. The HepaRG cell line, a superior in vitro modelt o L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol. 2016;32:37–59.

    Article  CAS  PubMed  Google Scholar 

  16. Cerec V, Glaise D, Garnier D, Morosan S, Turlin B, Drenou B, Gripon P, Kremsdorf D, Guguen-Guillouzo C, Corlu A. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology. 2007;45:957–67.

    Article  CAS  PubMed  Google Scholar 

  17. Parent R, Marion M-J, Furio L, Trepo C, Petit M-A. Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology. 2004;126:1147–56.

    Article  PubMed  Google Scholar 

  18. Guillouzo A, Corlu A, Aninat C, Glaise D, Motel F, Guguen-Guillouzo C. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact. 2007;168:66–73.

    Article  CAS  PubMed  Google Scholar 

  19. Gerets HHJ, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 2012;2012(28):69–87.

    Article  Google Scholar 

  20. Kotani N, Maeda K, Debori Y, Camus S, Li R, Chesne C, Sugiyama Y. Expression and transport function of drug uptake transporters in differentiated HepaRG cells. Mol Pharm. 2012;9:3434–41.

    Article  CAS  PubMed  Google Scholar 

  21. Le Vee M, Noel G, Jouan E, Stieger B, Fardel O. Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro. 2013;27:1979–86.

    Article  PubMed  Google Scholar 

  22. Bachour-El Azzi P, Sharanek A, Burban A, Li R, Guevel RL, Abdel-Razzak Z, Stieger B, Guguen-Guillouzo C, Guillouzo A. Comparative localization and functional activity of the main hepatobiliary transporters in HepaRG cells and primary human hepatocytes. Toxicol Sci. 2015;145:157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanebratt KP, Andersson TB. Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos. 2008;36:1444–52.

    Article  CAS  PubMed  Google Scholar 

  24. Kanebratt KP, Andersson TB. HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab Dispos. 2008;36:137–45.

    Article  CAS  PubMed  Google Scholar 

  25. Turpeinen M, Tolonen A, Chesne C, Guillouzo A, Uusitalo J, Pelkonen O. Functional expression, inhibition and induction of CYP enzymes in HepaRG cells. Toxicol In Vitro. 2009;23:748–53.

    Article  CAS  PubMed  Google Scholar 

  26. Darnell M, Schreiter T, Zeilinger K, Urbaniak T, Söderdahl T, Rossberg I, Dillner B, Berg A-L, Gerlach JC, Andersson TB. Cytochrome P450-dependent metabolism in HepaRG cells cultured in a dynamic three-dimensional bioreactor. Drug Metab Dispos. 2011;39:1131–8.

    Article  CAS  PubMed  Google Scholar 

  27. Josse R, Aninat C, Glaise D, Dumont J, Fessard V, Morel F, Poul JM, Guguen-Guillouzo C, Guillouzo A. Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies. Drug Metab Dispos. 2008;36:1111–8.

    Article  CAS  PubMed  Google Scholar 

  28. Antherieu S, Chesne C, Li R, Camus S, Lahoz A, Picazo L, Turpeinen M, Tolonen A, Uusitalo J, Guguen-Guillouzo C, Guillouzo A. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos. 2010;38:516–25.

    Article  CAS  PubMed  Google Scholar 

  29. Savary CC, Jiang X, Aubry M, Josse R, Kopp-Schneider A, Hewitt P, Guillouzo A. Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015;30:27–35.

    Article  CAS  PubMed  Google Scholar 

  30. Klein S, Mueller D, Shevchenko V, Noor F. Long-term maintenance of HepaRG cells in serum-free conditions and application in a repeated dose study. J Appl Toxicol. 2014;34:1078–86.

    Article  CAS  PubMed  Google Scholar 

  31. Dumont J, Josse R, Lambert C, Antherieu S, Le Hegarat L, Aninat C, Robin MA, Guguen-Guillouzo C. Differential toxicity of heterocyclic aromatic amines and their mixture in metabolically competent HepaRG cells. Toxicol Appl Pharmacol. 2010;245:256–63.

    Article  CAS  PubMed  Google Scholar 

  32. McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology. 2011;53:974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang Y, Chern H, Su W, Wu J, Chang S, Chiang C, Chang F, Lee S. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology. 2003;37:924–30.

    Article  CAS  PubMed  Google Scholar 

  34. Hassan HM, Guo H, Yousef BA, Luyong Z, Zhenzhou J. Hepatotoxicity mechanisms of isoniazid: a mini-review. J Appl Toxicol. 2015;35:1427–32.

    Article  CAS  PubMed  Google Scholar 

  35. Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WCM, van der Ven AJAM, Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol. 2008;23:192–202.

    Article  CAS  PubMed  Google Scholar 

  36. Dixit N, Baboota S, Kohli K, Ahmad S, Ali J. Silymarin: a review of pharmacological aspects and bioavailability enhancement approaches. Indian J Pharmacol. 2007;39:172–9.

    Article  CAS  Google Scholar 

  37. Vargas-Mendoza N, Madrigal-Santillan E, Morales-Gonzalez A, Esquivel-Soto J, Esquivel-Chirino C, Garcia-Luna y Gonzalez-Rubio M, Gayosso-de-Lucio JA, Morales-Gonzalez JA. Hepatoprotective effect of silymarin. World J Hepatol. 2014;6:144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants. 2015;4:204–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwab CE, Tuschl H. In vitro studies on the toxicity of isoniazid in different cell lines. Hum Exp Toxicol. 2003;22:607–15.

    Article  CAS  PubMed  Google Scholar 

  40. Shen C, Meng Q, Zhang G, Hu W. Rifampicin exacerbates isoniazid-induced toxicity in human but not in rat hepatocytes in tissue-like cultures. Br J Pharmacol. 2008;153:784–91.

    Article  CAS  PubMed  Google Scholar 

  41. Singh M, Sasi P, Rai G, Gupta VH, Amarapurkar D, Wangika PP. Studies on toxicity of antitubercular drugs namely isoniazid, rifampicin, and pyrazinamide in an in vitro model of HepG2 cell line. Med Chem Res. 2011;20:1611–5.

    Article  CAS  Google Scholar 

  42. Lee KK, Fujimoto K, Zhang C, Schwall CT, Alder NN, Pinkert CA, Krueger W, Rasmussen T, Boelsterli UA. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex I dysfunction in mouse hepatocytes. Free Rad Biol Med. 2013;65:584–94.

    Article  CAS  PubMed  Google Scholar 

  43. Boojar MMA, Hassanipour M, Mehr ES, Boojar MMA, Dehpour AR. New aspects of silibinin stereoisomers and their 3-O-galloyl derivatives on cytotoxicity and ceramide metabolism in Hep G2 hepatocarcinoma cell line. Iran J Pharmaceut Res. 2016;15:412–33.

    Google Scholar 

  44. Ezhilarasan D, Evraerts J, Brice S, Buc-Calderon P, Karthikeyan S, Sokal E, Naji M. Silibinin inhibits proliferation and migration of human hepatic stellate LX-2 cells. J Clin Exp Hepatol. 2016;6:167–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Smolowitz RM, Hahn ME, Stegeman JJ. Immunohistochemical localization of cytochrome P-450IA1 induced by 3,3′,4,4′-tetrachlorobiphenyl and by 2,3,7,8-tetrachlorodibenzoafuran in liver and extrahepatic tissues of the teleost Stenotomus chrysops (scup). Drug Metab Dispos. 1991;19:113–23.

    CAS  PubMed  Google Scholar 

  46. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    Article  CAS  PubMed  Google Scholar 

  47. Yagi K. Lipid peroxides and human diseases. Chem Phys Lipids. 1987;45:337–51.

    Article  CAS  PubMed  Google Scholar 

  48. Aitio A. A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal Biochem. 1978;85:488–91.

    Article  CAS  PubMed  Google Scholar 

  49. Pohl RJ, Fouts JR. A rapid method for assaying the metabolism of 7-ethoxyresorufin by microsomal subcellular fractions. Anal Biochem. 1980;107:150.

    Article  CAS  PubMed  Google Scholar 

  50. Chang TK, Crespi CL, Waxman DJ. Spectrophotometric analysis of human CYP2E1-catalyzed p-nitrophenol hydroxylation. Methods Mol Biol. 2006;320:127–31.

    CAS  PubMed  Google Scholar 

  51. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

    CAS  PubMed  Google Scholar 

  52. Hinchman CA, Matsumoto H, Simmons TW, Ballatori N. Intrahepatic conversion of a glutathione conjugate to its mercapturic acid. Metabolism of 1-chloro-2,4-dinitrobenzene in isolated perfused rat and guinea pig livers. J Biol Chem. 1991;266:22179–85.

    CAS  PubMed  Google Scholar 

  53. Klinger W, Muller D. The influence of age on the protein concentration in serum, liver and kidney of rats determined by various methods. Z Versuchstierk. 1974;16:149–53.

    CAS  Google Scholar 

  54. Larrey D. Epidemiology and individual susceptibility to adverse drug reactions affecting the liver. Semin Liver Dis. 2002;22:145–55.

    Article  CAS  PubMed  Google Scholar 

  55. Ostapowicz GM, Fontana R, Schiødt F, Larson A, Davern T, Han HS, McCashland T, Shakil A, Hay J, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM, U.S. Acute Liver Failure Study Group. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med. 2002;137:947–54.

    Article  PubMed  Google Scholar 

  56. Leise MD, Poterucha JJ, Talwalkar JA. Drug induced liver injury. Mayo Clin Proc. 2014;89:95–106.

    Article  CAS  PubMed  Google Scholar 

  57. Zumla A, Chakaya J, Centis R, D’Ambrosio L, Mwaba P, Bates M, Kapata N, Nyirenda T, Chanda D, Mfinanga S, Hoelscher M, Maeurer M, Migliori GB. Tuberculosis treatment and management—an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med. 2015;3:220–34.

    Article  PubMed  Google Scholar 

  58. Sarma GR, Immanuel C, Kailasam S, Narayana AS, Venkatesan P. Rifampin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am Rev Respir Dis. 1986;133:1072–5.

    CAS  PubMed  Google Scholar 

  59. Sodhi CP, Rana SV, Mehta SK, Vaiphei K, Attari S, Mehta S. Study of oxidative-stress in isoniazid-rifampicin induced hepatic injury in young rats. Drug Chem Toxicol. 1997;20:255–69.

    Article  CAS  PubMed  Google Scholar 

  60. Tafazoli S, Mashregi M, O’Brien PJ. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl Pharmacol. 2008;229:94–101.

    Article  CAS  PubMed  Google Scholar 

  61. Ryan DE, Ramanathan L, Iida S, Thomas PE, Haniu M, Shively JE, Lieber CS, Levin W. Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. J Biol Chem. 1985;260:6385–93.

    CAS  PubMed  Google Scholar 

  62. Ueng TH, Ueng YF. Induction of cytochrome P-450-dependent monooxygenases by isoniazid in hamster liver, kidney and lung. J Formos Med Assoc. 1991;90:723–30.

    CAS  PubMed  Google Scholar 

  63. Park KS, Sohn DH, Veech RL, Song BJ. Translational activation of ethanol-inducible cytochrome P450 (CYP2E1) by isoniazid. Eur J Pharmacol. 1993;248:7–14.

    CAS  PubMed  Google Scholar 

  64. Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, Wright JM. Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther. 1993;54:142–9.

    Article  CAS  PubMed  Google Scholar 

  65. Malekinejad H, Rahmani F, Valivande-Azar S, Taheri-Broujerdi M, Bazargani-Gilani B. Long-term administration of silymarin augments proinflammatory mediators in the hippocampus of rats: evidence for antioxidant and pro-oxidant effects. Hum Exp Toxicol. 2012;31:921–30.

    Article  CAS  PubMed  Google Scholar 

  66. Prochazkova D, Bousova I, Wilhelmov N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–23.

    Article  CAS  PubMed  Google Scholar 

  67. Brantley SJ, Oberlies NH, Kroll DJ, Paine MF. Two flavonolignans from milk thistle (Silybum marianum) inhibit CYP2C9-mediated warfarin metabolism at clinically achievable concentrations. J Pharmacol Exp Ther. 2010;332:1081–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dvorak Z, Vrzal R, Ulrichova J. Silybin and dehydrosilybin inhibit cytochrome P450 1A1 catalytic activity: a study in human keratinocytes and human hepatoma cells. Cell Biol Toxicol. 2006;22:81–90.

    Article  CAS  PubMed  Google Scholar 

  69. Brandon-Warner E, Sugg JA, Schrum LW, McKillop IH. Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Lett. 2010;291:120–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lee CK, Choi JS. Effects of silibinin, inhibitor of CYP3A4 and P-glycoprotein in vitro, on the pharmacokinetics of paclitaxel after oral and intravenous administration in rats. Pharmacology. 2010;85:350–6.

    Article  CAS  PubMed  Google Scholar 

  71. Doehmer J, Weiss G, McGregor GP, Appel K. Assessment of a dry extract from milk thistle (Silybum marianum) for interference with human liver cytochrome-P450 activities. Toxicol In Vitro. 2011;25:21–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelie Lupp.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13577_2017_175_MOESM1_ESM.tif

Supplementary material 1 (TIFF 2139 kb) Supplemental Figure S1 INH induced cytotoxicity in undifferentaited and in differentiated HepaRG cells. Undifferentiated and differentiated HepaRG cells were either left untreated (control) or were treated for 48 h with 10 mM or 100 mM INH after which phase contrast microscopy was performed. Original magnification: × 100. Representative photomicrographs from 3 independent experiments with three independent batches of cells are shown. Arrows: hepatocyte-like cells; asterisks: cholangiocyte-like cells

13577_2017_175_MOESM2_ESM.tif

Supplementary material 2 (TIFF 2414 kb) Supplemental Figure S2 Induction of CYP enzyme activities by prototypical inducers in HepaRG cells. HepaRG cells were either left untreated or were treated for 24 h with 25 µM β-naphthoflavone (BNF) or with 100 µM phenobarbital (PB). The cells were then harvested and (A) ethoxyresorufin-O-deetylation (EROD) activity or (B) ethoxycoumarin-O-deethylation (ECOD) activity was measured. Data are given as mean ± standard error of the mean (SEM), n = 3 independent batches of cells. *: p ≤ 0.05 versus untreated cells (control) (Dunnett’s post hoc test)

13577_2017_175_MOESM3_ESM.tif

Supplementary material 3 (TIFF 5997 kb) Supplemental Figure S3 CYP enzyme activities in HepG2 cells, in HepaRG cells, and in human liver 9000 g supernatants. (A) Ethoxyresorufin-O-deetylation (EROD) activity, (B) ethoxycoumarin-O-deethylation (ECOD) acitivity, (C) glutathione-S-transferase activity using 1-chloro-2,4-dinitrobenzene as a substrate, and (F) p-nitrophenol hydroxylase (PNPH) activity. For preparation of human liver 9000 g supernatants, human liver samples were homogenized in 0.1 M sodium phosphate buffer pH 7.4 (1:3 w/v) and centrifuged at 9000 × g for 30 min. Data are given as mean ± standard error of the mean (SEM), n = 3 independent batches of cells or 3 different human liver 9000 g supernatants

13577_2017_175_MOESM4_ESM.tif

Supplementary material 4 (TIFF 8909 kb) Supplemental Figure S4 Influence of different concentrations of silibinin on different parameters for cytotoxicity in HepaRG cells. Differentiated HepaRG cells were incubated for 48 h with increasing concentrations (0 µM-100 µM) of silibinin after which (A) cell viability was quantified by means of the CCK-8 assay, (B) LDH leakage, (C) ASAT release into the medium was measured. Data are given as mean ± standard error of the mean (SEM), n = 8 (A) or n = 3 (B, C) independent batches of cells. *: p ≤ 0.05 versus untreated cells (control) (Dunnett’s post hoc test). (D, E) Silibinin-treated cells were embedded in paraffin and 4-µm-sections were prepared from the paraffin blocks. (D) Hematoxylin-eosin staining; original magnification: x630. (E) PAS staining; original magnification: x630. Representative photomicrographs from 3 independent experiments with three independent batches of cells are shown

13577_2017_175_MOESM5_ESM.tif

Supplementary material 5 (TIFF 5928 kb) Supplemental Figure S5 Influence of silibinin on oxidative state and apoptosis rate in HepaRG cells. Differentiated HepaRG cells were incubated for 48 h with increasing concentrations (0 µM-100 µM) of silibinin after which (A) protein content of the cell pellet, (B) the cellular content of reduced glutathione, and (C) the concentration of lipid peroxidation products were measured. Data are given as mean ± standard error of the mean (SEM), n = 6 (A) or n = 3 (B, C) independent batches of cells. *: p ≤ 0.05 versus untreated cells (control) (Dunnett’s post hoc test). (D) Silibinin-treated cells were embedded in paraffin and 4-µm-sections were prepared from the paraffin blocks and stained for cleaved caspase-3 expression. Immunohistochemistry, counterstaining with hematoxylin; original magnification: x630. Representative photomicrographs from 3 independent experiments with three independent batches of cells are shown

13577_2017_175_MOESM6_ESM.tif

Supplementary material 6 (TIFF 11069 kb) Supplemental Figure S6 Influence of silibinin on biotransformation capacity in HepaRG cells. Differentiated HepaRG cells were incubated for 48 h with increasing concentrations (0 µM-100 µM) of silibinin after which (A) ethoxyresorufin-O-deetylation (EROD) activity, (B) ethoxycoumarin-O-deethylation (ECOD) activity, (C) glutathione-S-transferase activity using 1-chloro-2,4-dinitrobenzene as a substrate, and (F) p-nitrophenol hydroxylase (PNPH) activity were measured. Data are given as mean ± standard error of the mean (SEM), n = 3 independent batches of cells. *: p ≤ 0.05 versus untreated cells (control) (Dunnett’s post hoc test). (D, E) Silibinin-treated cells were embedded in paraffin and 4-µm-sections were prepared from the paraffin blocks and stained for (D) CYP1A2, (E) CYP2E1 expression. Immunohistochemistry, counterstaining with hematoxylin; original magnification: x630. Representative photomicrographs from 3 independent experiments with three independent batches of cells are shown

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, A., Pelz, T., Rennert, K. et al. Evaluation of HepaRG cells for the assessment of indirect drug-induced hepatotoxicity using INH as a model substance. Human Cell 30, 267–278 (2017). https://doi.org/10.1007/s13577-017-0175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-017-0175-9

Keywords

Navigation