Skip to main content

Advertisement

Log in

The diversity of the structure and genomic integration sites of HTLV-1 provirus in MT-2 cell lines

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

A human T-lymphotropic virus Type 1 (HTLV-1) positive cell line, MT-2, derived from human cord leukocytes co-culturing with adult T cell leukemia/lymphoma (ATL) cells is commonly used in HTLV-1 research; however, the details of provirus integrated in MT-2 genome have not yet been characterized. In this study, five types of HTLV-1 proviral sequences were detected in 11 different sites of the genome in a reference MT-2 cell line. The five types of HTLV-1 proviral sequences were one complete proviral genome, two types of proviruses with deletion of large internal viral sequences (5.3 and 3.9 kB), one provirus with a large deletion (6.2 kB) from 5′LTR to position 6257, and one provirus of LTR only. The provirus with identical deletion of large internal viral sequence (5.3 kB) was found to be integrated into six different sites (chromosomes). A complete provirus and three of four types of defective provirus were consistently detected in two other MT-2 cell lines cultured in different laboratories. Not only Tax/Rex RNA and HBZ RNA, but also the transcriptional product for a specific defective provirus, were detectable in all three MT-2 cell lines. Because it has been reported that defective provirus is frequently detected in ATL cells, these results may be important in understanding the mechanism of HTLV-1 proviral polymorphism, which may be related to leukemogenesis. In addition, the large variation in integrated HTLV-1 proviruses makes it important for researchers to exercise caution in their assessment and interpretation of results using MT-2 cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yamaguchi K, Yoshioka R, Kiyokawa T, Seiki M, Yoshida M, Takatsuki K. Lymphoma type adult T-cell leukemia—a clinicopathologic study of HTLV related T-cell type malignant lymphoma. Hematol Oncol. 1986;4:59–65.

    Article  CAS  PubMed  Google Scholar 

  2. Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, et al. HTLV-I associated myelopathy, a new clinical entity. Lancet. 1986;1:1031–2.

    Article  CAS  PubMed  Google Scholar 

  3. Richardson JH, Edwards AJ, Cruickshank JK, Rudge P, Dalgleish AG. In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol. 1990;64:5682–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyoshi I, Kubonishi I, Yoshimoto S, Shiraishi Y. A T-cell line derived from normal human cord leukocytes by co-culturing with human leukemic T-cells. Gann. 1981;72:978–81.

    CAS  PubMed  Google Scholar 

  5. Miyoshi I, Kubonishi I, Yoshimoto S, Shiraishi Y. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature. 1981;294:770–1.

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto N, Okada M, Koyanagi Y, Kannagi M, Hinuma Y. Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line. Science. 1982;217:737–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi N, Konishi H, Sabe H, Shigesada K, Noma T, Honjo T, et al. Genomic structure of HTLV (human T-cell leukemia virus):detection of defective genome and its amplification in MT-2 cells. EMBO J. 1984;3:1339–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tamiya S, Matsuoka M, Etho K, Watanabe T, Kamihira S, Yamaguchi K, et al. Two types of defective human T-lymphotrapic virus type I provirus in adult T-cell leukemia. Blood. 1996;88:3065–73.

    CAS  PubMed  Google Scholar 

  9. Tsukasaki K, Tsushima H, Yamamura M, Hata T, Murata K, Maeda T, et al. Integration patterns of HTLV-I provirus in relation to the clinical course of ATL: frequent clonal change at crisis from indolent disease. Blood. 1997;89:948–56.

    CAS  PubMed  Google Scholar 

  10. Kamihira S, Sugahara K, Tsuruda K, Minami S, Uemura A, Akamatsu N, et al. Proviral status of HTLV-1 integrated into the host genomic DNA of adult T-cell leukemia cells. Clin Lab Haematol. 2005;27:235–41.

    Article  CAS  PubMed  Google Scholar 

  11. Korber B, Okayama A, Donnelly R, Tachibana N, Essex M. Polymerase chain reaction analysis of defective human T-cell leukemia virus type I proviral genomes in leukemic cells of patients with adult T-cell leukemia. J Virol. 1991;65:5471–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Seabright M. Rapid banding technique for human chromosomes. Lancet. 1971;2:971–2.

    Article  CAS  PubMed  Google Scholar 

  13. Seiki M, Hattori S, Hirayama Y, Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci. 1983;80:3618–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ueno S, Umeki K, Takajo I, Nagatomo Y, Kusumoto N, Umekita K, et al. Proviral loads of human T-lymphotropic virus Type 1 in asymptomatic carriers with different infection routes. Int J Cancer. 2011;130:2318–26.

    Article  PubMed  Google Scholar 

  15. Etoh K, Tamiya S, Yamaguchi K, Okayama A, Tsubouchi H, Ideta T, et al. Persistent clonal proliferation of human T-lymphotropic virus type I-infected cells in vivo. Cancer Res. 1997;57:4862–7.

    CAS  PubMed  Google Scholar 

  16. Takemoto S, Matsuoka M, Yamaguchi K, Takatsuki K. A novel diagnostic method of adult T-cell leukemia: monoclonal integration of human T-cell lymphotropic virus type I provirus DNA detected by inverse polymerase chain reaction. Blood. 1994;84:3080–5.

    CAS  PubMed  Google Scholar 

  17. Okayama A, Stuver S, Matsuoka M, Ishizaki J, Tanaka G, Kubuki Y, et al. Role of HTLV-1 proviral DNA load and clonality in the development of adult T-cell leukemia/lymphoma in asymptomatic carriers. Int J Cancer. 2004;110:621–5.

    Article  CAS  PubMed  Google Scholar 

  18. Miyazaki M, Yasunaga J, Taniguchi Y, Tamiya S, Nakahata T, Matsuoka M. Preferential selection of human T-cell leukemia virus type 1 provirus lacking the 5′ long terminal repeat during oncogenesis. J Virol. 2007;81:5714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Varmus HE, Quintrell N, Ortiz S. Retroviruses as mutagens: insertion and excision of a nontransforming provirus alter expression of a resident transforming provirus. Cell. 1981;25:23–36.

    Article  CAS  PubMed  Google Scholar 

  20. Onafuwa-Nuga A, Telesnitsky A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev. 2009;73:451–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuoka M. Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene. 2003;22:5131–40.

    Article  CAS  PubMed  Google Scholar 

  22. Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci. 2006;103:720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morozov VA, Weiss RA. Two types of HTLV-1 particles are released from MT-2 cells. Virology. 1999;15:279–84.

    Article  Google Scholar 

  24. Iino T, Takeuchi K, Nam SH, Siomi H, Sabe H, Kobayashi N, Hatanaka M. Structural analysis of p28 adult T-cell leukaemia-associated antigen. J Gen Virol. 1986;67:1373–9.

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi K, Kobayashi N, Nam SH, Yamamoto N, Hatanaka M. Molecular cloning of cDNA encoding gp68 of adult T-cell leukaemia-associated antigen: evidence for expression of the pX IV region of human T-cell leukaemia virus. J Gen Virol. 1985;66:1825–9.

    Article  CAS  PubMed  Google Scholar 

  26. Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CR. Bangham. HTLV-1-infected T cells contain a single integrated provirus in natural infection. Blood. 2012; 3488–3490.

Download references

Acknowledgments

The authors would like to thanks to Ms. Y. Kaseda and Ms. A. Miyamoto (Miyazaki University) for their technical support assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Okayama.

Ethics declarations

Conflict of interest

We have no disclosure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashikura, Y., Umeki, K., Umekita, K. et al. The diversity of the structure and genomic integration sites of HTLV-1 provirus in MT-2 cell lines. Human Cell 29, 122–129 (2016). https://doi.org/10.1007/s13577-016-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-016-0136-8

Keywords

Navigation