Skip to main content

HTLV-1 Replication and Adult T Cell Leukemia Development

  • Chapter
  • First Online:
Viruses and Human Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 217))

Abstract

Human T-cell leukemia virus type 1 (HTLV-1) was discovered in 1980 as the first, and to date, the only retrovirus that causes human cancer. While HTLV-1 infection is generally asymptomatic, 3–5% of infected individuals develop a T cell neoplasm known as adult T cell leukemia/lymphoma (ATL) decades after infection. Since its discovery, HTLV-1 has served as a model for understanding retroviral oncogenesis, transcriptional regulation, cellular signal transduction, and cell-associated viral infection and spread. Much of the initial research was focused on the viral trans-activator/oncoprotein, Tax. Over the past decade, the study of HTLV-1 has entered the genomic era. With the development of new systems for studying HTLV-1 infection and pathogenesis, the completion of the whole genome, exome and transcriptome sequencing analyses of ATL, and the discovery of HBZ as another HTLV-1 oncogene, many established concepts about how HTLV-1 infects, persists and causes disease have undergone substantial revision. This chapter seeks to integrate our current understanding of the mechanisms of action of Tax and HBZ with the comprehensive genomic information of ATL to provide an overview of how HTLV-1 infects, replicates and causes leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MD, Ye J, Xie L, Green PL (2004) Transformation studies with a human T-cell leukemia virus type 1 molecular clone. J Virol Methods 116(2):195–202

    Google Scholar 

  • Andresen V, Pise-Masison CA, Sinha-Datta U, Bellon M, Valeri V, Washington Parks R et al (2011) Suppression of HTLV-1 replication by Tax-mediated rerouting of the P13 viral protein to nuclear speckles. Blood. 118(6):1549–1559. https://doi.org/10.1182/blood-2010-06-293340. Pubmed Pmid: 21677314; Pubmed Central Pmcid: Pmcpmc3156045

  • Arnold J, Zimmerman B, Li M, Lairmore MD, Green PL (2008) Human T-cell leukemia virus type-1 antisense-encoded gene, HBZ, promotes T-lymphocyte proliferation. Blood 112(9):3788–3797

    Google Scholar 

  • Banerjee P, Feuer G, Barker E (2007) Human T-cell leukemia virus type 1 (HTLV-1) P12I down-modulates ICAM-1 and -2 and reduces adherence of natural killer cells, thereby protecting HTLV-1-infected primary Cd4+ T cells from autologous natural killer cell-mediated cytotoxicity despite the reduction of major histocompatibility complex class I molecules on infected cells. J Virol 81(18):9707–9717

    Article  CAS  Google Scholar 

  • Barbeau B, Peloponese JM, Mesnard JM (2013) Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis. Front Microbiol 4:226. https://doi.org/10.3389/fmicb.2013.00226 [Doi]

  • Barnard AL, Igakura T, Tanaka Y, Taylor GP, Bangham CR (2005) Engagement of specific T-cell surface molecules regulates cytoskeletal polarization in HTLV-1-infected lymphocytes. Blood 106(3):988–995

    Google Scholar 

  • Basbous J, Arpin C, Gaudray G, Piechaczyk M, Devaux C, Mesnard JM (2003) The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J Biol Chem 278(44):43620–43627

    Google Scholar 

  • Baydoun HH, Bai XT, Shelton S, Nicot C (2012) HTLV-I Tax increases genetic instability by inducing dna double strand breaks during dna replication and switching repair to Nhej. Plos One 7(8):E42226. Epub 2012/08/24. https://doi.org/10.1371/journal.pone.0042226. Pubmed Pmid: 22916124; Pubmed Central Pmcid: Pmcpmc3423393

  • Cereseto A, Diella F, Mulloy JC, Cara A, Michieli P, Grassmann R et al (1996) P53 functional impairment and high P21waf1/CIP1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells. Blood 88(5):1551–1560

    Google Scholar 

  • Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472. Doi:Nature09837 [Pii];https://doi.org/10.1038/nature09837 [Doi]

  • Charvet C, Canonigo Aj, Becart S, Maurer U, Miletic AV, Swat W (2006) VAV1 Promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and P27KIP1 expression. J Immunol 177(8):5024–50231. Pubmed Pmid: 17015685

    Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. https://doi.org/10.1038/nri3405. Pubmed Pmid: 23470321; Pubmed Central Pmcid: Pmcpmc3786574

  • Chlichlia K, Moldenhauer G, Daniel PT, Busslinger M, Gazzolo L, Schirrmacher V et al (1995) Immediate effects of reversible HTLV-1 Tax function: T-cell activation and apoptosis. Oncogene 10:269–277

    Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated creb binds specifically to the nuclear protein CBP. Nature 365:855–859

    Google Scholar 

  • Clerc I, Polakowski N, Ndre-Arpin C, Cook P, Barbeau B, Mesnard JM (2008) An interaction between the HTLV-1 bZip factor (Hbz) and the KIX domain of P300/CBP contributes to the downregulation of Tax-dependent viral transcription by HBZ J Biol Chem 283:23903–23913

    Google Scholar 

  • Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CR (2012) HTLV-1-infected T cells contain a single integrated provirus in natural infection. Blood 120(17):3488–3490. Doi:Blood-2012-07-445593 [Pii];https://doi.org/10.1182/blood-2012-07-445593 [Doi]

  • Cook LB, Melamed A, Niederer H, Valganon M, Laydon D, Foroni L et al (2014) The role of HTLV-1 clonality, proviral structure, and genomic integration site in adult T-cell leukemia/lymphoma. Blood 123(25):3925–3931. https://doi.org/10.1182/blood-2014-02-553602. Pubmed Pmid: 24735963; Pubmed Central Pmcid: Pmcpmc4064332

  • De Castro-Amarante MF, Pise-Masison CA, Mckinnon K, Washington Parks R, Galli V, Omsland M et al (2015) Human T cell leukemia virus type 1 infection of the three monocyte subsets contributes to viral burden in humans. J Virol 90(5):2195–2207. https://doi.org/10.1128/jvi.02735-15. Pubmed Pmid: 26608313; Pubmed Central Pmcid: Pmcpmc4810698

  • De La Fc, Santiago F, Chong Sy, Deng L, Mayhood T, Fu P et al (2000) Overexpression of P21(WAF1) in human T-cell lymphotropic virus type 1-infected cells and its association with cyclin A/CDK2. J Virol 74(16):7270–7283

    Google Scholar 

  • De La FC, Wang L, Wang D, Deng L, Wu K, Li H et al (2003) Paradoxical effects of a stress signal on pro- and anti-apoptotic machinery in HTLV-1 Tax expressing cells. Molcell Biochem 245(1–2):99–113

    Google Scholar 

  • Derse D, Hill SA, Lloyd PA, Chung H, Morse BA (2001) Examining human T-lymphotropic virus type 1 infection and replication by cell-free infection with recombinant virus vectors 7. J Virol 75(18):8461–8468

    Google Scholar 

  • Derse D, Heidecker G, Mitchell M, Hill S, Lloyd P, Princler G (2004) Infectious transmission and replication of human T-cell leukemia virus type 1. Front Biosci 9:2495–2499

    Article  CAS  Google Scholar 

  • Dodon MD, Villaudy J, Gazzolo L, Haines R, Lairmore M (2012) What we are learning on HTLV-1 pathogenesis from animal models. Front Microbiol. 3:320. https://doi.org/10.3389/fmicb.2012.00320. Pubmed Pmid: 22969759; Pubmed Central Pmcid: Pmcpmc3431546

  • Edwards D, Fenizia C, Gold H, De Castro-Amarante MF, Buchmann C, Pise-Masison CA et al (2011) ORF-I and ORF-II-encoded proteins in HTLV-1 infection and persistence. Viruses 3(6):861–885. https://doi.org/10.3390/v3060861. Pubmed Pmid: 21994758; Pubmed Central Pmcid: Pmcpmc3185781

  • Einsiedel LJ, Pham H, Woodman RJ, Pepperill C, Taylor KA (2016) The prevalence and clinical associations of HTLV-1 infection in a remote indigenous community. Med J Aust 205(7):305–309. Epub 2016/09/30. https://doi.org/10.5694/mja16.00285. Pubmed Pmid: 27681971

  • El Sabban ME, Nasr R, Dbaibo G, Hermine O, Abboushi N, Quignon F et al (2000) Arsenic-interferon-alpha-triggered apoptosis in HTLV-I transformed cells is associated with Tax down-regulation and reversal of NF-KappaB activation. Blood 96(8):2849–2855

    Google Scholar 

  • Emmerich CH, Ordureau A, Strickson S, Arthur JS, Pedrioli PG, Komander D et al (2013) Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A 110(38):15247–15252. https://doi.org/10.1073/pnas.1314715110. Pubmed Pmid: 23986494; Pubmed Central Pmcid: Pmc3780889

  • Emmerich CH, Bakshi S, Kelsall IR, Ortiz-Guerrero J, Shpiro N, Cohen P (2016) Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 474(3):452–461. https://doi.org/10.1016/j.bbrc.2016.04.141. Pubmed Pmid: 27133719; Pubmed Central Pmcid: Pmcpmc4880150

  • Fujikawa D, Nakagawa S, Hori M, Kurokawa N, Soejima A, Nakano K et al (2016) Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood 127(14):1790–1802. Epub 2016/01/17. https://doi.org/10.1182/blood-2015-08-662593. Pubmed Pmid: 26773042

  • Galli V, Nixon CC, Strbo N, Artesi M, De Castro-Amarante MF, Mckinnon K et al (2019) Essential role of human T cell leukemia virus type 1 ORF-I in lethal proliferation of Cd4(+) cells in humanized mice. J Virol 93(19). Epub 2019/07/19. https://doi.org/10.1128/jvi.00565-19. Pubmed Pmid: 31315992; Pubmed Central Pmcid: Pmcpmc6744231

  • Gazon H, Lemasson I, Polakowski N, Cesaire R, Matsuoka M, Barbeau B et al (2012) Human T-cell leukemia virus type 1 (HTLV-1) Bzip factor requires cellular transcription factor jund to upregulate HTLV-1 antisense transcription from the 3′ long terminal repeat. J Virol 86(17):9070–9078. Doi:Jvi.00661-12 [Pii]; https://doi.org/10.1128/jvi.00661-12 [Doi]

  • Gazon H, Belrose G, Terol M, Meniane JC, Mesnard JM, Cesaire R et al (2016) Impaired expression of Dicer and some micrornas in HBZ expressing cells from acute adult T-cell leukemia patients. Oncotarget 7(21):30258–30275. Epub 2016/02/06. https://doi.org/10.18632/oncotarget.7162. Pubmed Pmid: 26849145; Pubmed Central Pmcid: Pmcpmc5058679

  • Gazon H, Barbeau B, Mesnard JM, Peloponese JM Jr (2017) Hijacking of the AP-1 signaling pathway during development of ATl. Front Microbiol 8:2686. Epub 2018/01/31. https://doi.org/10.3389/fmicb.2017.02686. Pubmed Pmid: 29379481; Pubmed Central Pmcid: Pmcpmc5775265

  • Gessain A, Cassar O (2012) Epidemiological aspects and world distribution of HTLV-1 infection. Front Microb 3:388. https://doi.org/10.3389/fmicb.2012.00388 [Doi]

  • Giam CZ, Semmes OJ (2016) HTLV-1 Infection and adult T-cell leukemia/lymphoma—a tale of two proteins: Tax and HBZ. Viruses 8(6). Epub 2016/06/21. https://doi.org/10.3390/v8060161. Pubmed Pmid: 27322308; Pubmed Central Pmcid: Pmcpmc4926181

  • Grassmann R, Dengler C, Muller Fleckenstein I, Fleckenstein B, Mcguire K, Dokhelar MC et al (1989) Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a herpesvirus saimiri vector. Proc Natl Acad Sci U S A86:3351–3355

    Google Scholar 

  • Gross C, Thoma-Kress AK (2016) Molecular mechanisms of HTLV-1 cell-to-cell transmission. Viruses 8(3). https://doi.org/10.3390/v8030074. Pubmed Pmid: 27005656; Pubmed Central Pmcid: Pmcpmc4810264

  • Grossman WJ, Kimata JT, Wong FH, Zutter M, Ley TJ, Ratner L (1995) Development of leukemia in mice transgenic for the Tax gene of human T-cell leukemia virus type I. Proc Natl Acad Sci U S A92:1057–1061

    Google Scholar 

  • Gruber K (2018) Australia tackles HTLV-1. Lancet Infect Dis 18(10):1073–1074. Epub 2018/10/12. https://doi.org/10.1016/s1473-3099(18)30561-9. Pubmed Pmid: 30303105

  • Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36(5):831–844. Epub 2009/12/17. Doi:S1097-2765(09)00778-3 [Pii] https://doi.org/10.1016/j.molcel.2009.10.013. Pubmed Pmid: 20005846

  • Hall AP, Irvine J, Blyth K, Cameron ER, Onions DE, Campbell ME (1998) Tumours derived from HTLV-I Tax transgenic mice are characterized by enhanced levels of apoptosis and oncogene expression. J Pathol 186(2):209–214

    Google Scholar 

  • Haoudi A, Semmes OJ (2003) The HTLV-1 Tax oncoprotein attenuates DNA damage induced G1 arrest and enhances apoptosis in P53 null cells 6. Virology 305(2):229–239

    Google Scholar 

  • Haoudi A, Daniels RC, Wong E, Kupfer G, Semmes OJ (2003) Human T-cell leukemia virus-I Tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response. J Biol Chem 278(39):37736–37744

    Google Scholar 

  • Harhaj EW, Giam CZ (2018) NF-kappaB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. Febs J 285(18):3324–3336. Epub 2018/05/04. https://doi.org/10.1111/febs.14492. Pubmed Pmid: 29722927

  • Harrod R, Tang Y, Nicot C, Lu HS, Vassilev A, Nakatani Y et al (1998) An exposed kid-like domain in human t-cell lymphotropic virus type 1 tax is responsible for the recruitment of coactivators cbp/p300. Mol Cell Biol 18(9):5052–5061

    Google Scholar 

  • Hasegawa H, Sawa H, Lewis MJ, Orba Y, Sheehy N, Yamamoto Y et al (2006) Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 12(4):466–472

    Google Scholar 

  • Hasegawa H, Sawa H, Lewis MJ, Orba Y, Sheehy N, Yamamoto Y et al (2006) Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med 12(4):466–472. Epub 2006/03/22. https://doi.org/10.1038/nm1389. Pubmed Pmid: 16550188

  • Hayakawa M (2012) Role of K63-linked polyubiquitination in NF-kappaB signalling: which ligase catalyzes and what molecule is targeted? J Biochem 151(2):115–118. Doi:Mvr139 [Pii]; https://doi.org/10.1093/jb/mvr139 [Doi]

  • Hinrichs SH, Nerenberg M, Reynolds RK, Khoury G, Jay G (1987) A transgenic mouse model for human neurofibromatosis. Science 237:1340–1343

    Google Scholar 

  • Hiraragi H, Michael B, Nair A, Silic-Benussi M, Ciminale V, Lairmore M (2005) Human T-lymphotropic virus type 1 mitochondrion-localizing protein P13II sensitizes jurkat T cells to RAS-mediated apoptosis. Jvirol. 79(15):9449–9457

    Article  CAS  Google Scholar 

  • Ho YK, Zhi H, Debiaso D, Philip S, Shih HM, Giam CZ (2012) HTLV-1 Tax-induced rapid senescence is driven by the transcriptional activity of NF-kappaB and depends on chronically activated ikkalpha and P65/Rela. J Virol 86(17):9474–9483. Doi:Jvi.00158-12 [Pii];https://doi.org/10.1128/jvi.00158-12 [Doi]

  • Ho YK, Zhi H, Bowlin T, Dorjbal B, Philip S, Zahoor MA et al (2015) HTLV-1 Tax stimulates ubiquitin E3 ligase, ring finger protein 8, to assemble lysine 63-linked polyubiquitin chains for Tak1 and IKK activation. Plos Pathog 11(8):E1005102. https://doi.org/10.1371/journal.ppat.1005102. Pubmed Pmid: 26285145; Pubmed Central Pmcid: Pmc4540474

  • Huey DD, Bolon B, La Perle KMD, Kannian P, Jacobson S, Ratner L et al (2018) Role of wild-type and recombinant human T-cell leukemia viruses in lymphoproliferative disease in humanized NSG mice. Comp Med 68(1):4–14. Epub 2018/02/21. Pubmed Pmid: 29460716; Pubmed Central Pmcid: Pmcpmc5824134

    Google Scholar 

  • Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, Griffiths GM et al (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299(5613):1713–176

    Google Scholar 

  • Jain P, Manuel Sl, Khan ZK, Ahuja J, Quann K, Wigdahl B (2009) DC-sign mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J Virol 2009;83(21):10908–109021. https://doi.org/10.1128/jvi.01054-09. Pubmed Pmid: 19692463; Pubmed Central Pmcid: Pmcpmc2772783

  • Jeong SJ, Radonovich M, Brady JN, Pise-Masison CA (2004) HTLV-I Tax induces a novel interaction between P65/Rela and P53 that results in inhibition of P53 transcriptional activity. Blood 104(5):1490–1497

    Google Scholar 

  • Jones KS, Petrow-Sadowski C, Bertolette DC, Huang Y, Ruscetti FW (2005) Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into Cd4+ T cells. J Virol 79(20):12692–12702

    Google Scholar 

  • Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW (2008) Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of Cd4(+) T cells. Nat Med 14(4):429–436

    Google Scholar 

  • Joshi RP, Koretzky GA (2013) Diacylglycerol kinases: regulated controllers of T cell activation, function, and development. Int J Mol Sci 14(4):6649–73. https://doi.org/10.3390/Ijms14046649. Pubmed Pmid: 23531532; Pubmed Central Pmcid: Pmcpmc3645659

  • Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J et al (2015) Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 47(11):1304–1315. https://doi.org/10.1038/Ng.3415. Pubmed Pmid: 26437031

  • Kataoka K, Iwanaga M, Yasunaga JI, Nagata Y, Kitanaka A, Kameda T et al (2018) Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood 131(2):215–225. Epub 2017/11/01. https://doi.org/10.1182/blood-2017-01-761874. Pubmed Pmid: 29084771

  • Katsuya H, Ishitsuka K, Utsunomiya A, Hanada S, Eto T, Moriuchi Y et al (2015) Treatment and survival among 1594 patients with ATL. Blood 126(24):2570–2577. Epub 2015/09/13. https://doi.org/10.1182/blood-2015-03-632489. Pubmed Pmid: 26361794

  • Katsuya H, Islam S, Tan BJY, Ito J, Miyazato P, Matsuo M et al (2019) The nature of the HTLV-1 provirus in naturally infected individuals analyzed by the viral DNA-capture-SEQ approach. Cell Rep 29(3):724–35 E4. Epub 2019/10/17. https://doi.org/10.1016/j.celrep.2019.09.016. Pubmed Pmid: 31618639

  • Katzav S (2015) VAV1: a Dr. Jekyll and Mr. Hyde protein–good for the hematopoietic system, bad for cancer. Oncotarget 6(30):28731–28742. https://doi.org/10.18632/oncotarget.5086. Pubmed Pmid: 26353933; Pubmed Central Pmcid: Pmcpmc4745688

  • Kawatsuki A, Yasunaga Ji, Mitobe Y, Green Pl, Matsuoka M (2016) HTLV-1 bZip factor protein targets the RB/E2F-1 pathway to promote proliferation and apoptosis of primary CD4 T cells. Oncogene. https://doi.org/10.1038/onc.2015.510. Pubmed Pmid: 26804169

  • Kelly K, Davis P, Mitsuya H, Irving S, Wright J, Grassmann R et al (1992) A high proportion of early response genes are constitutively activated in T cells by HTLV-I. Oncogene 7:1463–1470

    PubMed  CAS  Google Scholar 

  • Kogure Y, Kataoka K (2017) Genetic alterations in adult T-Cell leukemia/lymphoma. Cancer Sci 108(9):1719–1725. Epub 2017/06/20. https://doi.org/10.1111/cas.13303. Pubmed Pmid: 28627735; Pubmed Central Pmcid: Pmcpmc5581529

  • Kuhlmann AS, Villaudy J, Gazzolo L, Castellazzi M, Mesnard JM, Duc DM (2007) HTLV-1 HBZ cooperates with jund to enhance transcription of the human telomerase reverse transcriptase gene (Htert). Retrovirology 4:92

    Google Scholar 

  • Kwok RP, Laurance ME, Lundblad JR, Goldman PS, Shih H, Connor LM et al (1996) Control of camp-regulated enhancers by the viral transactivator tax through creb and the co-activator cbp. Nature 380(6575):642–646

    Google Scholar 

  • Lambert S, Bouttier M, Vassy R, Seigneuret M, Petrow-Sadowski C, Janvier S et al (2009) HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood 113(21):5176–5185

    Article  CAS  Google Scholar 

  • Landry S, Halin M, Vargas A, Lemasson I, Mesnard JM, Barbeau B (2009) Upregulation of human T-cell leukemia virus type 1 antisense transcription by the viral Tax protein. J Virol 83(4):2048–2054. Doi:Jvi.01264-08 [Pii]; https://doi.org/10.1128/jvi.01264-08 [Doi]

  • Lefebvre L, Vanderplasschen A, Ciminale V, Heremans H, Dangoisse O, Jauniaux JC et al (2002) Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 P13(II) accessory proteins interact with Farnesyl pyrophosphate synthetase. J Virol 76(3):1400–1414. Pubmed Pmid: 11773414; Pubmed Central Pmcid: Pmcpmc135811

    Google Scholar 

  • Lemasson I, Lewis MR, Polakowski N, Hivin P, Cavanagh MH, Thebault S et al (2007) Human T-cell leukemia virus type 1 (HTLV-1) bZip Protein interacts with the cellular transcription factor creb to inhibit HTLV-1 transcription. J Virol 81(4):1543–1453

    Google Scholar 

  • Lenzmeier BA, Giebler HA, Nyborg JK (1998) Human T-cell leukemia virus type I Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter. Mol Cell Biol 18:721–731

    Google Scholar 

  • Li M, Kesic M, Yin H, Yu L, Green PL (2009) Kinetic analysis of human T-cell leukemia virus type 1 gene expression in cell culture and infected animals. J Virol 83(8):3788–3797. Jvi.02315-08 [Pii];https://doi.org/10.1128/jvi.02315-08 [Doi]

  • Liu M, Yang L, Zhang L, Liu B, Merling R, Xia Z et al (2008) Human T-Cell leukemia virus type 1 infection leads to arrest in the G1 phase of the cell cycle. J Virol 82(17):8442–8455

    Article  CAS  Google Scholar 

  • Ma G, Yasunaga J, Matsuoka M (2016) Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 13:16. Epub 2016/03/17. https://doi.org/10.1186/s12977-016-0249-x. Pubmed Pmid: 26979059; Pubmed Central Pmcid: Pmcpmc4793531

  • Mahgoub M, Yasunaga JI, Iwami S, Nakaoka S, Koizumi Y, Shimura K et al (2018) Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells. Proc Natl Acad Sci U S A 115(6):E1269–E1278. Epub 2018/01/24. https://doi.org/10.1073/pnas.1715724115. Pubmed Pmid: 29358408; Pubmed Central Pmcid: Pmcpmc5819419

  • Majone F, Jeang KT (2000) Clastogenic effect of the human T-cell leukemia virus type I Tax oncoprotein correlates with unstabilized DNA breaks. J Biol Chem 275(42):32906–32910

    Google Scholar 

  • Majone F, Semmes OJ, Jeang KT (1993) Induction of micronuclei by HTLV-I Tax: a cellular assay for function. Virology 193:456–459

    Google Scholar 

  • Manel N, Kim FJ, Kinet S, Taylor N, Sitbon M, Battini JL (2003) The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115(4):449–459

    Google Scholar 

  • Manivannan K, Rowan AG, Tanaka Y, Taylor GP, Bangham CR (2016) CADM1/TSLC1 identifies HTLV-1-infected cells and determines their susceptibility to CTL-mediated lysis. PLoS Pathog 12(4):E1005560. Epub 2016/04/23. https://doi.org/10.1371/journal.ppat.1005560. Pubmed Pmid: 27105228; Pubmed Central Pmcid: Pmcpmc4841533

  • Marriott SJ, Semmes OJ (2005) Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response. Oncogene 24(39):5986–5995

    Article  CAS  Google Scholar 

  • Matsumoto K, Shibata H, Fujisawa JI, Inoue H, Hakura A, Tsukahara T et al (1997) Human T-cell leukemia virus type 1 Tax protein transforms RAT fibroblasts via two distinct pathways 12. J Virol 71(6):4445–4451

    Google Scholar 

  • Matsuoka M, Green PL (2009) The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology 6:71. https://doi.org/10.1186/1742-4690-6-71. Pubmed Pmid: 19650892; Pubmed Central Pmcid: Pmc2731725

  • Matsuoka M, Jeang KT (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Natrevcancer 7(4):270–280

    CAS  Google Scholar 

  • Matsuoka M, Mesnard JM (2020) HTLV-1 bZip factor: the key viral gene for pathogenesis. Retrovirology 17(1):2. Epub 2020/01/10. https://doi.org/10.1186/s12977-020-0511-0. Pubmed Pmid: 31915026; Pubmed Central Pmcid: Pmcpmc6950816

  • Mazurov D, Ilinskaya A, Heidecker G, Lloyd P, Derse D (2010) Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog 6(2):E1000788. https://doi.org/10.1371/journal.ppat.1000788 [Doi]

  • Mesnard JM, Barbeau B, Devaux C (2006) HBZ, a new important player in the mystery of adult T-cell leukemia. Blood. 108(13):3979–3982. https://doi.org/10.1182/blood-2006-03-007732. Pubmed Pmid: 16917009

  • Miyoshi I, Kubonishi I, Yoshimoto S, Shiraishi Y (1981) A T-cell line derived from normal human cord leukocytes by co-culturing with human leukemic T-cells. GANN 72(6):978–981

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Shaffer AL 3rd, Ceribelli M, Zhang M, Wright G, Huang DW et al (2018) Targeting the HTLV-I-regulated BATF3/IRF4 transcriptional network in adult T cell leukemia/lymphoma. Cancer Cell 34(2):286–297 E10. Epub 2018/07/31. https://doi.org/10.1016/j.ccell.2018.06.014. Pubmed Pmid: 30057145

  • Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H et al (2016) Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun 7:12547. https://doi.org/10.1038/Ncomms12547. Pubmed Pmid: 27552911; Pubmed Central Pmcid: Pmcpmc4999505

  • Nejmeddine M, Barnard AL, Tanaka Y, Taylor GP, Bangham CR (2005) Human T-lymphotropic virus, type 1, Tax protein triggers microtubule reorientation in the virological synapse. J Biol Chem 280(33):29653–29660

    Google Scholar 

  • Nejmeddine M, Negi VS, Mukherjee S, Tanaka Y, Orth K, Taylor GP et al (2009) HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse. Blood 114(5):1016–1025. https://doi.org/10.1182/blood-2008-03-136770. Pubmed Pmid: 19494354

  • Nerenberg M, Hinrichs SH, Reynolds RK, Khoury G, Jay G (1987) The TAT gene of human T-lymphotropic virus type 1 induces mesenchymal tumors in transgenic mice. Science 237:1324–1329

    Google Scholar 

  • Nicot C, Dundr M, Johnson JM, Fullen JR, Alonzo N, Fukumoto R et al (2004) HTLV-1-encoded P30II is a post-transcriptional negative regulator of viral replication. Nat Med 10(2):197–201

    Google Scholar 

  • Niederer HA, Bangham CR (2014) Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 6(11):4140–4164. https://doi.org/10.3390/V6114140. Pubmed Pmid: 25365582; Pubmed Central Pmcid: Pmcpmc4246213

  • Nyborg JK, Egan D, Sharma N (2009) The HTLV-1 Tax protein: revealing mechanisms of transcriptional activation through histone acetylation and nucleosome disassembly. Bio Chim Biophys Acta 1799(3–4):266–274

    Google Scholar 

  • Ohsugi T, Kumasaka T, Okada S, Urano T (2007) The Tax protein of HTLV-1 promotes oncogenesis in not only immature T cells but also mature T cells. Nat Med 13(5):527–528. Epub 2007/05/05. https://doi.org/10.1038/nm0507-527. Pubmed Pmid: 17479090

  • Okayama A, Stuver S, Matsuoka M, Ishizaki J, Tanaka G, Kubuki Y et al (2004) Role of HTLV-1 proviral DNA load and clonality in the development of adult T-cell leukemia/lymphoma in asymptomatic carriers. Intjcancer. 110(4):621–625

    CAS  Google Scholar 

  • Pais-Correia AM, Sachse M, Guadagnini S, Robbiati V, Lasserre R, Gessain A et al (2010) Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 16(1):83–89

    Google Scholar 

  • Panfil AR, Al-Saleem JJ, Green PL (2013) Animal models utilized in HTLV-1 research. Virology (Auckl) 4:49–59. https://doi.org/10.4137/Vrt.S12140. Pubmed Pmid: 25512694; Pubmed Central Pmcid: Pmcpmc4222344

  • Paca Uccaralertkun S, Zhao LJ, Adya N, Cross JV, Cullen BR, Boros IM et al (1994) In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax. Mol Cell Biol 14:456–462

    Google Scholar 

  • Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Gen 43(9):830–837. https://doi.org/10.1038/Ng.892. Pubmed Pmid: 21804550; Pubmed Central Pmcid: Pmcpmc3297422

  • Philip S, Zahoor MA, Zhi H, Ho YK, Giam CZ (2014) Regulation of human t-lymphotropic virus type I latency and reactivation by HBZ and Rex. PLoS Pathog 10(4):E1004040. https://doi.org/10.1371/journal.ppat.1004040. Pubmed Pmid: 24699669; Pubmed Central Pmcid: Pmc3974842

  • Pise-Masison CA, Mahieux R, Jiang H, Ashcroft M, Radonovich M, Duvall J et al (2000) Inactivation of P53 by human T-cell lymphotropic virus type 1 Tax requires activation of the NF-kappaB pathway and is dependent on P53 Phosphorylation. Molcell Biol. 20(10):3377–3386

    Google Scholar 

  • Pise-Masison CA, De Castro-Amarante MF, Enose-Akahata Y, Buchmann RC, Fenizia C, Washington Parks R et al (2014) Co-dependence of HTLV-1 P12 and P8 functions in virus persistence. PLoS Pathog 10(11):E1004454. https://doi.org/10.1371/journal.ppat.1004454. Pubmed Pmid: 25375128; Pubmed Central Pmcid: Pmcpmc4223054

  • Pozzatti R, Vogel J, Jay G (1990) The human T-lymphotropic virus type I Tax gene can cooperate with the RAS Oncogene to induce neoplastic transformation of cells. Molcell Biol 10:413–417

    CAS  Google Scholar 

  • Rauch DA, Ratner L (2011) Targeting HTLV-1 activation of NF-kappaB in mouse models and Atll patients. Viruses 3(6):886–900. https://doi.org/10.3390/v3060886. Pubmed Pmid: 21994759; Pubmed Central Pmcid: Pmc3185776

  • Rivera-Walsh I, Waterfield M, Xiao G, Fong A, Sun SC (2001) NF-KappaB signaling pathway governs trail gene expression and human T-cell leukemia virus-I Tax-induced T-cell death. J Biol Chem 276(44):40385–40388

    Google Scholar 

  • Sasaki H, Nishikata I, Shiraga T, Akamatsu E, Fukami T, Hidaka T et al (2005) Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood 105(3):1204–1213

    Article  CAS  Google Scholar 

  • Satou Y, Yasunaga J, Yoshida M, Matsuoka M (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Procnatlacadsciusa 103(3):720–725

    Article  CAS  Google Scholar 

  • Satou Y, Yasunaga J, Yoshida M, Matsuoka M (2008) HTLV-1 bZip factor (HBZ) gene has a growth-promoting effect on adult T-cell leukemia cells. Rinsho Ketsueki 49(11):1525–1529

    PubMed  Google Scholar 

  • Satou Y, Yasunaga J, Zhao T, Yoshida M, Miyazato P, Takai K et al (2011) HTLV-1 bZip factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog 7(2):E1001274. https://doi.org/10.1371/journal.ppat.1001274 [Doi]

  • Semmes OJ, Majone F, Cantemir C, Turchetto L, Hjelle B, Jeang KT (1996) HTLV-I and HTLV-II Tax: differences in induction of micronuclei in cells and transcriptional activation of viral LTRs. Virology 217(1):373–379

    Google Scholar 

  • Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G et al (2001) Activation by Ikkalpha of a second, evolutionary conserved, NF-KappaB signaling pathway. Science 293(5534):1495–1499

    Google Scholar 

  • Shembade N, Harhaj NS, Yamamoto M, Akira S, Harhaj EW (2007) The human T-cell leukemia virus type 1 Tax oncoprotein requires the ubiquitin-conjugating enzyme Ubc13 for NF-kappaB activation. J Virol 81(24):13735–13742

    Google Scholar 

  • Shibata Y, Tanaka Y, Gohda J, Inoue J (2011) Activation of the IkappaB kinase complex by HTLV-1 Tax requires cytosolic factors involved in Tax-induced polyubiquitination. J Bio Chem 150(6):679–686. Doi:Mvr106 [Pii]; https://doi.org/10.1093/jb/mvr106 [Doi]

  • Shibata Y, Tokunaga F, Goto E, Komatsu G, Gohda J, Saeki Y et al (2017) HTLV-1 Tax induces formation of the active macromolecular IKK complex by generating Lys63- and Met1-linked hybrid polyubiquitin chains. Plos Pathog 13(1):E1006162. https://doi.org/10.1371/Journal.Ppat.1006162. Pubmed Pmid: 28103322; Pubmed Central Pmcid: Pmcpmc5283754

  • Shimoyama M (1991) Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the lymphoma study group (1984–87). Br J Haematol 79(3):428–437

    Google Scholar 

  • Shudofsky AMD, Giam CZ (2019) Cells of adult t-cell leukemia evade HTLV-1 Tax/NF-KappaB hyperactivation-induced senescence. Blood Adv. 3(4):564–569. Epub 2019/02/23. https://doi.org/10.1182/bloodadvances.2018029322. Pubmed Pmid: 30787019; Pubmed Central Pmcid: Pmcpmc6391679

  • Silic-Benussi M, Cavallari I, Zorzan T, Rossi E, Hiraragi H, Rosato A et al (2004) Suppression of tumor growth and cell proliferation by P13II, a mitochondrial protein of human T cell leukemia virus type 1. Proc Natl Acad Sci USA 101(17):6629–6634

    Article  CAS  Google Scholar 

  • Sinha-Datta U, Horikawa I, Michishita E, Datta A, Sigler-Nicot JC, Brown M et al (2004) Transcriptional activation of htert through the NF-kappaB pathway in HTLV-I-transformed cells. Blood 104(8):2523–2531

    Google Scholar 

  • Siu YT, Chin KT, Siu KL, Yee Wai CE, Jeang KT, Jin DY (2006) Torc1 and Torc2 coactivators are required for Tax activation of the human T-Cell leukemia virus type 1 long terminal repeats. J Virol 80(14):7052–7059

    Google Scholar 

  • Sun SC (2012) The noncanonical NF-kappaB pathway. Immunol Rev 246(1):125–1240. https://doi.org/10.1111/J.1600-065x.2011.01088.X. Pubmed Pmid: 22435551; Pubmed Central Pmcid: Pmc3313452

  • Takahashi M, Higuchi M, Makokha GN, Matsuki H, Yoshita M, Tanaka Y et al (2013) HTLV-1 Tax oncoprotein stimulates ROS production and apoptosis in T cells by interacting with USP10. Blood 122(5):715–725. https://doi.org/10.1182/blood-2013-03-493718. Pubmed Pmid: 23775713

  • Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J, Nosaka K et al (2004) Genetic and epigenetic inactivation of Tax gene in adult T-cell leukemia cells. Int J Cancer 109(4):559–567

    Article  CAS  Google Scholar 

  • Tanaka A, Takahashi C, Yamaoka S, Nosaka T, Maki M, Hatanaka M (1990) Oncogenic transformation by the Tax gene of human T-cell leukemia virus type I in vitro. Proc Natl Acad Sci U S A 87:1071–1075

    Article  CAS  Google Scholar 

  • Tanaka G, Okayama A, Watanabe T, Aizawa S, Stuver S, Mueller N et al (2005) The clonal expansion of human T lymphotropic virus type 1-infected T cells: a comparison between seroconverters and long-term carriers. J Infect Dis 191(7):1140–1147

    Article  Google Scholar 

  • Taniguchi Y, Nosaka K, Yasunaga J, Maeda M, Mueller N, Okayama A et al (2005) Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2:64

    Article  CAS  Google Scholar 

  • Tao Z, Ghosh G (2012) Understanding NIK regulation from its structure. Structure 20(10):1615–1617. https://doi.org/10.1016/J.Str.2012.09.012. Pubmed Pmid: 23063006

  • Taylor GP, Matsuoka M (2005) Natural History of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 24(39):6047–6057

    Google Scholar 

  • Tezuka K, Xun R, Tei M, Ueno T, Tanaka M, Takenouchi N et al (2014) An animal model of adult T-cell leukemia: humanized mice with HTLV-1-specific immunity. Blood 123(3):346–355. Blood-2013-06-508861 [Pii]; https://doi.org/10.1182/blood-2013-06-508861 [Doi]

  • Tripp A, Banerjee P, Sieburg M, Planelles V, Li F, Feuer G (2005) Induction of cell cycle arrest by human T-Cell lymphotropic virus type 1 Tax in hematopoietic progenitor (Cd34+) cells: modulation of P21CIP1/WAF1 and P27KIP1 expression. Jvirol. 79(22):14069–14078

    Article  CAS  Google Scholar 

  • Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G et al (1999) Induction of BCL-X(L) expression by human T-cell leukemia virus type 1 Tax through NF-KappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 73(10):7981–7987. Pubmed Pmid: 10482545; Pubmed Central Pmcid: Pmcpmc112812

    Google Scholar 

  • Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W Jr et al (2009) Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol 27(3):453–459. Doi:Jco.2008.18.2428 [Pii]; https://doi.org/10.1200/jco.2008.18.2428 [Doi]

  • Umeki K, Hisada M, Maloney EM, Hanchard B, Okayama A (2009) Proviral loads and clonal expansion of HTLV-1-infected cells following vertical transmission: a 10-year follow-up of children in jamaica. Inter Virol 52(3):115–122. Doi:000219384 [Pii]; https://doi.org/10.1159/000219384 [Doi]

  • Ungewickell A, Bhaduri A, Rios E, Reuter J, Lee CS, Mah A et al (2015) Genomic analysis of mycosis fungoides and sezary syndrome identifies recurrent alterations in TNFR2. Nat Gen 47(9):1056–60. https://doi.org/10.1038/ng.3370. Pubmed Pmid: 26258847

  • Van Prooyen N, Andresen V, Gold H, Bialuk I, Pise-Masison C, Franchini G (2010) Hijacking the T-cell communication network by the human T-cell leukemia/lymphoma virus type 1 (HTLV-1) P12 and P8 proteins. Mol Aspects Med 31(5):333–343. Epub 2010/08/03. https://doi.org/10.1016/j.mam.2010.07.001. Pubmed Pmid: 20673780; Pubmed Central Pmcid: Pmcpmc2967610

  • Vernin C, Thenoz M, Pinatel C, Gessain A, Gout O, Delfau-Larue MH et al (2014) HTLV-1 bZip factor hbz promotes cell proliferation and genetic instability by activating oncomirs. Cancer Res 74(21):6082–6093. https://doi.org/10.1158/0008-5472.Can-13-3564. Pubmed Pmid: 25205102

  • Wang L, Ni X, Covington KR, Yang By, Shiu J, Zhang X (2015) Genomic profiling of sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Gen 47(12):1426–1434. https://doi.org/10.1038/ng.3444. Pubmed Pmid: 26551670; Pubmed Central Pmcid: Pmcpmc4829974

  • Wang C, Long W, Peng C, Hu L, Zhang Q, Wu A, et al (2016) HTLV-1 Tax functions as a ubiquitin E3 ligase for direct IKK activation via synthesis of mixed-linkage polyubiquitin chains. Plos Pathog 12(4):E1005584. https://doi.org/10.1371/Journal.Ppat.1005584. Pubmed Pmid: 27082114; Pubmed Central Pmcid: Pmcpmc4833305

  • Watanabe T (2017) Adult T-Cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood 129(9):1071–1081. Epub 2017/01/25. https://doi.org/10.1182/blood-2016-09-692574. Pubmed Pmid: 28115366; Pubmed Central Pmcid: Pmcpmc5374731

  • Wu X, Sun SC (2007) Retroviral oncoprotein Tax deregulates NF-kappaB by activating Tak1 and mediating the physical association of Tak1-IKK. Embo Rep 8(5):510–515

    Google Scholar 

  • Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M et al (2001) Retroviral oncoprotein Tax induces processing of NF-kappaB2/P100 in T Cells: evidence for the involvement of Ikkalpha. Embo J 20(23):6805–6815

    Google Scholar 

  • Yamada T, Yamaoka S, Goto T, Nakai M, Tsujimoto Y, Hatanaka M (1994) The human T-cell leukemia virus type I Tax protein induces apoptosis which is blocked by the BCL-2 protein. Jvirol. 68:3374–3379

    Article  CAS  Google Scholar 

  • Yamamoto-Taguchi N, Satou Y, Miyazato P, Ohshima K, Nakagawa M, Katagiri K (2013) HTLV-1 bZip factor induces inflammation through labile Foxp3 expression. PLoS Pathog 9(9):E1003630. https://doi.org/10.1371/Journal.Ppat.1003630. Pubmed Pmid: 24068936; Pubmed Central Pmcid: Pmc3777874

  • Yamaoka S, Tobe T, Hatanaka M (1992) Tax protein of human T-cell leukemia virus type I is required for maintenance of the transformed phenotype. Oncogene 7:433–437

    PubMed  CAS  Google Scholar 

  • Yamaoka S, Inoue H, Sakurai M, Sugiyama T, Hazama M, Yamada T et al (1996) Constitutive activation of NF-kappaB is essential for transformation of RAT fibroblasts by the human T-cell leukemia virus type I Tax protein. Embo J 15(4):873–887

    Google Scholar 

  • Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F et al (1998) Complementation cloning of nemo, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93(7):1231–1240

    Google Scholar 

  • Yang L, Kotomura N, Ho YK, Zhi H, Bixler S, Schell MJ et al (2011) Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol. 85(6):3001–3009. Doi:Jvi.00086-10 [Pii]; https://doi.org/10.1128/jvi.00086-10 [Doi]

  • Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N et al (2016) HTLV-1 bZip factor impairs anti-viral immunity by inducing co-inhibitory molecule, T cell immunoglobulin and itim domain (Tigit). PLoS Pathog. 12(1):E1005372. https://doi.org/10.1371/Journal.Ppat.1005372. Pubmed Pmid: 26735971; Pubmed Central Pmcid: Pmcpmc4703212

  • Yl Kuo, Cz Giam (2006) Activation Of the anaphase promoting complex by HTLV-1 Tax leads to senescence. EMBO J 25(8):1741–1752

    Article  CAS  Google Scholar 

  • Yoshida M, Satou Y, Yasunaga J, Fujisawa J, Matsuoka M (2008) Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZip factor (HBZ) gene. Jvirol. 82(19):9359–9368

    Article  CAS  Google Scholar 

  • Yoshita M, Higuchi M, Takahashi M, Oie M, Tanaka Y, Fujii M (2012) Activation of MTOR by human T-cell leukemia virus type 1 Tax is important for the transformation of mouse T cells to interleukin-2-independent growth. Cancer Sci 103(2):369–374. https://doi.org/10.1111/J.1349-7006.2011.02123.X Pubmed Pmid: 22010857

  • Zahoor MA, Philip S, Zhi H, Giam CZ (2014) NF-KappaB inhibition facilitates the establishment of cell lines that chronically produce human T-lymphotropic virus type 1 viral particles. J Virol 88(6):3496–3504. Doi:Jvi.02961-13 [Pii]; https://doi.org/10.1128/jvi.02961-13 [Doi]

  • Zhang L, Zhi H, Liu M, Kuo YL, Giam CZ (2009) Induction of P21(CIP1/WAF1) expression by human T-lymphotropic virus type 1 Tax requires transcriptional activation and mRNA stabilization. Retrovirology 6:35

    Google Scholar 

  • Zhao T, Yasunaga J, Satou Y, Nakao M, Takahashi M, Fujii M et al (2009) Human T-cell leukemia virus type 1 bZip factor selectively suppresses the classical pathway of NF-KappaB. Blood 113(12):2755–2764

    Article  CAS  Google Scholar 

  • Zhao LJ, Giam CZ (1992) Human T-cell lymphotropic virus type I (HTLV-I) transcriptional activator, Tax, enhances CREB binding to HTLV-I 21-base-pair repeats by protein-protein interaction. Proc Natl Acad Sci USA 89:7070–7074

    Google Scholar 

  • Zhao T, Satou Y, Matsuoka M (2014) Development of T cell lymphoma in HTLV-1 bZip factor and Tax double transgenic mice. Arch Virol 159(7):1849–1856. Epub 2014/05/14. https://doi.org/10.1007/s00705-014-2099-y. Pubmed Pmid: 24818712

  • Zhi H, Yang L, Kuo Yl, Ho YK, Shih HM, Giam CZ (2011) NF-KappaB hyper-activation by HTLV-1 Tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ. PLoS Pathog 7(4):E1002025. https://doi.org/10.1371/journal.ppat.1002025 [Doi]

  • Zhi H, Zahoor MA, Shudofsky AM, Giam CZ (2014) KSHV vcyclin counters the senescence/G1 arrest response triggered by NF-KappaB hyperactivation. Oncogene. Doi:Onc2013567 [Pii]; https://doi.org/10.1038/onc.2013.567 [Doi]

  • Zhi H, Guo X, Ho YK, Pasupala N, Engstrom HAA, Semmes OJ et al (2020) RNF8 Dysregulation and Down-regulation During HTLV-1 Infection Promote Genomic Instability in Adult T-Cell Leukemia. PLoS Pathog 16(5):e1008618. Epub 2020/05/27. https://doi.org/10.1371/journal.ppat.1008618. PubMed PMID: 32453758

Download references

Disclosure of Conflicts of Interest

The author declares no conflicts of interest.

Disclaimer Statement The opinions and assertions expressed herein are those of the author’s and do not necessarily reflect the official policy or position of the Uniformed Services University or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chou-Zen Giam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giam, CZ. (2021). HTLV-1 Replication and Adult T Cell Leukemia Development. In: Wu, TC., Chang, MH., Jeang, KT. (eds) Viruses and Human Cancer. Recent Results in Cancer Research, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-030-57362-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57362-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57361-4

  • Online ISBN: 978-3-030-57362-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics