Skip to main content

Advertisement

Log in

Enhanced drought and salt tolerance of Arabidopsis thaliana by ectopic expression of the molecular chaperone artemin from Artemia urmiana

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Due to the resistance of Artemia urmiana to salt stress, researchers have isolated and investigated Artemin, the most prevalent protein within the cyst of this aquatic species. In vitro studies have revealed Artemin's role as a molecular chaperone, effectively engaging with the hydrophobic surfaces of unfolded and/or partially folded proteins. In light of Artemin's established functional significance, its encoding gene has been successfully introduced into mammalian cells; however, no published research has elucidated its potential role within plant cells. In the current investigation, the artemin gene was successfully cloned into the pPZPY122 plant vector and subsequently introduced into Arabidopsis thaliana plants. The T3 homozygote transgenic plants (art) were then subjected to a series of environmental stresses, including heat, salt (NaCl) and drought (Mannitol). To assess the mutant's resilience to these stresses, their seed germination indices were evaluated. The art line demonstrated a higher degree of tolerance towards the abiotic stresses. A comparative analysis revealed that ascorbate peroxidase activity, catalase activity, and proline content exhibited significantly enhanced levels in some NaCl-treated art plants compared to their counterparts in Col-0. Regarding the expression of the genes in the SOS pathway, it was found that SOS1 is significantly upregulated under NaCl treatment in the art mutant. Conversely, under normal growth conditions, the morphology and growth of transgenics remained indistinguishable from those of wild-type plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

APX :

Ascorbate peroxidase

art :

Artemin lines

ART :

artemin Gene

CAT :

Catalase

Col-0:

Colombia-0

Csp:

Cold shock proteins

FGP :

Final germination percentage;

GB :

Glycine betaine

GI:

Germination index

Gm :

Gentamicin

GP :

Germination percentage

GR:

Germination rate,

MDG:

Mean daily germination,

MS :

Murashige and Skoog

P5CS :

Pyrroline-5-carboxylatesynthetase

PI4P :

Phosphatidylinositol 4-phosphate

sHSP :

Small heat shock proteins

SOD :

Superoxide dismutase

SOS :

Salt overly sensitive

References

  • Ajithkumar IP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense roth. under drought stress. Cell Biochem Biophys 68:587–595

    Article  CAS  PubMed  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi JP et al (2017) Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS ONE 12(4):e0176357

    Article  PubMed  PubMed Central  Google Scholar 

  • Baltanás FC, García-Navas R, Santos E (2021) SOS2 comes to the fore: differential functionalities in physiology and pathology. Int J Mol Sci 22(12):6613

    Article  PubMed  PubMed Central  Google Scholar 

  • Begum N, Wang L, Ahmad H, Akhtar K, Roy R, Khan MI et al (2022) Coinoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microb Ecol 83:971–988. https://doi.org/10.1007/s00248-021-01815-7

    Article  ADS  CAS  PubMed  Google Scholar 

  • Brindha C, Vasantha S, Raja AK, Tayade AS (2021) Characterization of the salt overly sensitive pathway genes in sugarcane under salinity stress. Physiol Plantarum 171(4):677–687

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants. John wiley & sons

    Google Scholar 

  • Castiglioni P et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattivelli L et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105(1–2):1–14

    Article  Google Scholar 

  • Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 274(4):1093–1101

    Article  CAS  PubMed  Google Scholar 

  • de Dios AJ (2019) A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 23:101136

    Article  Google Scholar 

  • Díaz P, Monza J, Márquez A (2005) Drought and saline stress. Lotus japonicus handbook, 978–1–4020–3735–1, Springer, Dordrecht, pp 39–50

  • Du B, Nian H, Zhang Z, Yang C (2010) Effects of aluminum on superoxide dismutase and peroxidase activities, and lipid peroxidation in the roots and calluses of soybeans differing in aluminum tolerance. Acta Physiol Plant 32:883–890

    Article  CAS  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1981) The influence of desiccation on cassava seed germination and longevity. Ann Bot-London 47(1):173-175

    Article  Google Scholar 

  • Fageria N, Moreira A (2011) The role of mineral nutrition on root growth of crop plants. Adv Agron 110:251–331

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319. https://doi.org/10.1093/jxb/erh003

    Article  CAS  PubMed  Google Scholar 

  • Gaber A et al (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physio Plantarum 128(2):251–262

    Article  CAS  Google Scholar 

  • Gelvin SB (2006) Agrobacterium virulence gene induction. Agrobacterium protocols: pp 77–85

  • Grover A, Singh A, Blumwald E (2011) Transgenic strategies toward the development of salt-tolerant plants, In Agricultural salinity assessment and management. p 235–274

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Hao S, Wang Y, Yan Y, Liu Y, Wang J, Chen S (2021) A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulture 7(6):132

    Article  Google Scholar 

  • Harris D, Tripathi R, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. Direct seeding: Research Strategies and Opportunities, International Research Institute, Manila, Philippines:231–240.

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  • Hnilickova H, Kraus K, Vachova P, Hnilicka F (2021) Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 10(5):845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Bojikova-Fournier S, King AM, MacRae TH (2011) The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues. Cell Stress Chaperones 16:133–141

    Article  CAS  PubMed  Google Scholar 

  • Hunter EA, Glasbey CA, Naylor RE (1984) The analysis of data from germination tests. J Agr Sci-Cambridge 102(1):207-213

    Article  Google Scholar 

  • Im YJ, Ji M, Lee A, Killens R, Grunden AM, Boss WF (2009) Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol 151(2):893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanyi-Nagy R, Davidovic L, Khandjian E, Darlix J-L (2005) Disordered RNA chaperone proteins: from functions to disease. Cel Mol Life Sciences 62:1409–1417

    Article  CAS  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15(4):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan S, Parray J (2016) Approaches to Heavy Metal Tolerance in Plants. Springer, Singapore, p 9789811016929

    Book  Google Scholar 

  • Jeong JS et al (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11(1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Kareska S (2010) Factors affecting hydrogen peroxidase activity. Essai 7(1):27

    Google Scholar 

  • Katsuya-Gaviria K, Paris G, Dendooven T, Bandyra KJ (2022) Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol 19(1):419–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya MD, Okçu G, Atak M, Cıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295

  • Khosravi Z, Khalili MAN, Moradi S, Sajedi RH, Zeinoddini M (2018) The molecular chaperone artemin efficiently blocks fibrillization of TAU protein in vitro. Cell Journal (yakhteh) 19(4):569

    Google Scholar 

  • Kotowski F (1926) Temperature relations to germination of vegetable seed. P Am Soc Hortic Sci 23:176–184

    Google Scholar 

  • Kundrátová K, Bartas M, Pečinka P, Hejna O, Rychlá A, Čurn V, Červeň J. (2021) Transcriptomic and proteomic analysis of drought stress response in opium poppy plants during the first week of germination. Plants. 10;10(9):1878

  • Li J, Wang S, Yu J, Wang L, Zhou S (2013) A modified CTAB protocol for plant DNA extraction. Chinese Bulletin of Botany 48(1):72

    Article  Google Scholar 

  • Ludwiczak A, Osiak M, Cárdenas-Pérez S, Lubińska-Mielińska S, Piernik A (2021) Osmotic stress or ionic composition: which affects the early growth of crop species more? Agronomy 11(3):435

    Article  CAS  Google Scholar 

  • Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31:687–696

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu X, Lv W, Yang Y (2022) Molecular mechanisms of plant responses to salt stress. Front Plant Sci 13:934877

    Article  PubMed  PubMed Central  Google Scholar 

  • MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. In: Seminars in cell & developmental biology,. vol 14. Elsevier, pp 251–258

  • Morales M, Munné-Bosch S (2019) Malondialdehyde: Facts and artifacts. Plant Physiol 180(3):1246–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motulsky H (2014) Intuitive biostatistics: a nonmathematical guide to statistical thinking. Oxford University Press, Oxford, USA

    Google Scholar 

  • Orlovsky, N., Japakova, U., Zhang, H., & Volis, S. (2016). Effect of salinity on seed germination, growth and ion content in dimorphic seeds of Salicornia europaea L.(Chenopodiaceae). Plant diversity, 38(4), 183–189

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. The Plant J 62(2):316–329

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim W-Y, Yun D-J (2016) A new insight of salt stress signaling in plant. Mol Cells 39(6):447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao HL, Xuan YH, Park SH, Je BI, Park SJ, Park SH, Kim CM, Huang J, Wang GK, Kim MJ & Kang SM (2010). OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30:19–27

  • Piri R, Moradi A, Balouchi H, Salehi A (2019) Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Sci Hortic 257:108667

    Article  CAS  Google Scholar 

  • Priya, P., Patil, M., Pandey, P., Singh, A., Babu, V. S., & Senthil‐Kumar, M. (2023). Stress combinations and their interactions in plants database: a one‐stop resource on combined stress responses in plants. The Plant Journal

  • Qiu Z, MacRae TH (2008) ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J 275(14):3556–3566

    Article  CAS  PubMed  Google Scholar 

  • Queiroz MS et al (2019) Drought stresses on seed germination and early growth of maize and sorghum. J Agric Sci 11(2):310

    Google Scholar 

  • Team, R. D. C. (2010). R: A language and environment for statistical computing. (No Title).

  • Rosero A, Granda L, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R (2020) A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency. Plants 9(10):1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan S, Xue Q, Tylkowska K (2002) The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci Technol 30(1):61–67

  • Rueden CT et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:1–26

    Article  ADS  Google Scholar 

  • Saadaoui W, et al. (2023) Effects of drought stress induced by D-Mannitol on the germination and early seedling growth traits, physiological parameters and phytochemicals content of Tunisian squash (Cucurbita maximaDuch.) landraces. Front Plant Sci 14

  • Shahangian SS, Rasti B, Sajedi RH, Khodarahmi R, Taghdir M, Ranjbar B (2011) Artemin as an efficient molecular chaperone. The Protein J 30:549–557

    Article  CAS  PubMed  Google Scholar 

  • Sharma A et al (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Correia J, Freitas S, Tavares RM, Lino-Neto T, Azevedo H (2014) Phenotypic analysis of the Arabidopsis heat stress response during germination and early seedling development. Plant Methods 10(1):1–11

    Article  Google Scholar 

  • Smith-Moore S et al (2018) Adeno-associated virus Rep proteins antagonize phosphatase PP1 to counteract KAP1 repression of the latent viral genome. P Natl Acad Sci USA 115(15):E3529–E3538. https://doi.org/10.1073/pnas.1721883115

    Article  CAS  Google Scholar 

  • Sofi P, Djanaguiraman M, Siddique K, Prasad P (2018) Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian J Plant Physi 23:796–809

    Article  Google Scholar 

  • The World Map of Salt Affected Soil FAO, UNITED NATIONS (2023) In. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/

  • Tych KM et al (2015) Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms. Biochem Soc T 43(2):179–185

    Article  CAS  Google Scholar 

  • Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya H (2012) Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci 182:59–70

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S et al (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. P Natl Acad Sci USA 109(49):20113–20118

    Article  ADS  CAS  Google Scholar 

  • Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127(2):426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F. (2021). Semi-quantitative RT-PCR: An effective method to explore the regulation of gene transcription level affected by environmental pollutants. In Environmental Toxicology and Toxicogenomics: Principles, Methods, and Applications (pp. 95–103). New York, NY: Springer US.

  • Warner A, Brunet R, MacRae TH, Clegg J (2004) Artemin is an RNA-binding protein with high thermal stability and potential RNA chaperone activity. Arch Biochem Biophysics 424(2):189–200

    Article  CAS  Google Scholar 

  • Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2010) Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biol Plantarum 54:105–111

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Yu G, Li H, Li X, Mu C (2020) Overexpression of small heat shock protein LimHSP16. 45 in Arabidopsis hsp17. 6II mutant enhances tolerance to abiotic stresses. Russ J Plant Physl 67:231–241

    Article  CAS  Google Scholar 

  • Zeid I, Shedeed Z (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plantarum 50:635–640

    Article  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhu J, Gong Z, Zhu J-K (2022) Abiotic stress responses in plants. Nat Rev Genetics 23(2):104–119

    Article  PubMed  Google Scholar 

  • Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R (2023) Plants’ response to abiotic stress: Mechanisms and strategies. International Journal of Molecular Sciences. Jun 30; 24(13):10915.

Download references

Acknowledgements

This work is based upon research funded by Iran National Science Foundation (INSF) under project number 95831962.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mehdi Sohani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1531 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poormohammad, Z., Shahrokhi, S., Abedi, A. et al. Enhanced drought and salt tolerance of Arabidopsis thaliana by ectopic expression of the molecular chaperone artemin from Artemia urmiana. J. Plant Biochem. Biotechnol. (2024). https://doi.org/10.1007/s13562-024-00877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13562-024-00877-1

Keywords

Navigation