Skip to main content
Log in

Identification, expression analysis, and potential roles of microRNAs in the regulation of polysaccharide biosynthesis in Polygonatum cyrtonema Hua

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs with important roles in plant growth, development, and metabolic processes. Polygonatum cyrtonema Hua (P. cyrtonema) is an important Chinese traditional medicinal herb with broad pharmacological functions, and polysaccharides are the main biological substance accumulated in the P. cyrtonema rhizome. However, regulation of the process of polysaccharide biosynthesis in P. cyrtonema remains largely unknown.To elucidate the miRNAs and their targets involved in polysaccharide biosynthesis in P. cyrtonema, four small RNA libraries were constructed from flower, leaf, rhizome, and root tissues and sequenced. A total of 69 conserved and 5 novel miRNAs were identified, of which 6 miRNAs (miR156a-5p, miR156f-5p, miR395a-5, miR396a-3p, miR396g-3p, and miR397-5p-1) were down-regulated and 7 miRNAs (miR160, miR160h-1, miR160e-5p, miR319b-1, miR319-1, miR319c-5p-3, and miR319c-1) were up-regulated in rhizomes compared with flower, leaf, and root tissues. Bioinformatics analysis showed that the predicted targets of these miRNAs were mostly transcription factors and functional genes enriched in metabolic and secondary metabolite biosynthetic pathways, and 7 genes and their paired miRNAs were identified in carbohydrate metabolism. qRT-PCR expression analysis demonstrated that 6 miRNAs and their targets involved in carbohydrate metabolism were existed a negative correlation in. P. cyrtonema tissues. MiR396a-3p and one of its target genes, abfA, were possibly involved in polysaccharide biosynthesis pathway. This is the first report on the identification of conserved and novel miRNAs and their potential targets in P. cyrtonema, thus providing molecular evidence for the role of miRNAs in the regulation of polysaccharide biosynthesis in P. cyrtonema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The sRNA-Seq data sets of four P. cyrtonema tissues have been deposited in NCBI Sequence Read Archive (SRA) database under the accession number SRP193031. The RNA-seq data sets of four P. cyrtonema tissues have been deposited in NCBI Sequence Read Archive (SRA) database under the accession number SRP193176.

Abbreviations

miRNA:

MicroRNA

qRT-PCR:

Quantitative real-time PCR

DEM:

Differentially expressed miRNA

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

sRNA:

Small RNA

TPM:

Transcripts per kilobase million

SPL:

Squamosa promoter-binding protein-like

ARF:

Auxin response factor

MYB:

V-myb avian myeloblastosis viral oncogene homolog

TCP:

Teosinte branched1/Cincinnata/proliferating cell factor

abfA:

Alpha-L-arabinofuranosidase

GalDH:

L-galactose dehydrogenase

SORD:

L-iditol 2-dehydrogenase

SDHA:

Succinate dehydrogenase

PSPs:

Polygonatum polysaccharides

GRF1:

Growth-regulating factor1

SAMT:

Salicylic acid carboxyl methyltransferase

GHs:

Glycosyl hydrolases

NBS-LRR:

Nucleotide-binding site-leucine-rich repeat

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

    Article  PubMed  CAS  Google Scholar 

  • Bonar N, Liney M, Zhang R et al (2018) Potato miR828 is associated with purple tuber skin and flesh color. Front Plant Sci 9:1742

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Luan Y, Zhai J et al (2015) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34(12):2013–2025

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Meng J, Zhai J et al (2017) MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid. Plant Sci Int J Exp Plant Biol 265:177–187

    CAS  Google Scholar 

  • Cui X, Wang S, Cao H et al (2018) A review: the bioactivities and pharmacological applications of polygonatum sibiricum polysaccharides. Molecules 23(5):1170

    Article  PubMed Central  Google Scholar 

  • Damodharan S, Corem S, Gupta SK et al (2018) Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J Cell Mol Biol 96(4):855–868

    Article  CAS  Google Scholar 

  • Evers M, Huttner M, Dueck A et al (2015) miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinform 16:370

    Article  Google Scholar 

  • Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. Methods Mol Biol 592:51–57

    Article  PubMed  CAS  Google Scholar 

  • Fan W, Zhang S, Du H et al (2014) Genome-wide identification of different dormant Medicago sativa L. MicroRNAs in response to fall dormancy. PLoS ONE 9(12):e114612

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedlander MR, Chen W, Adamidi C et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415

    Article  PubMed  Google Scholar 

  • Gebelin V, Leclercq J et al (2013) The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Tree Physiol 33(10):1084–1098

    Article  PubMed  CAS  Google Scholar 

  • Guan X, Pang M, Nah G et al (2014) miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun 5:3050

    Article  PubMed  Google Scholar 

  • Hou J, Lu D, Mason AS et al (2019) Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Planta 250(1):23–40

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, Sato F, Ohme-Takagi M (2017) Roles of miR319 and TCP transcription factors in leaf development. Plant Physiol 175(2):874–885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Carroll BJ (2018) Evolution and diversification of small RNA Pathways in flowering plants. Plant Cell Physiol 59(11):2169–2187

    PubMed  CAS  Google Scholar 

  • Li XY, Lin EP, Huang HH et al (2018) Molecular Characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family in Betula luminifera. Front Plant Sci 9:608

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Xu R, Yan X et al (2019) De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin V in Celastrus angulatus maxim. BMC Genom 20(1):7

    Article  Google Scholar 

  • Li W, He Z, Zhang L et al (2017) miRNAs involved in the development and differentiation of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. BMC Genom 18(1):783

    Article  Google Scholar 

  • Liu N, Dong L, Deng X et al (2018) Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. BMC Plant Biol 18(1):336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Y, Zhang X, Luo Z et al (2015) Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biol 15:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Megha S, Basu U, Joshi RK et al (2018) Physiological studies and genome-wide microRNA profiling of cold-stressed Brassica napus. Plant Physiol Biochem PPB 132:1–17 `

  • Natarajan B, Kalsi HS, Godbole P et al (2018) MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J Exp Bot 69(8):2023–2036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qu D, Yan F, Meng R et al (2016) Identification of MicroRNAs and their targets associated with fruit-bagging and subsequent sunlight re-exposure in the “granny smith” apple exocarp using high-throughput sequencing. Front Plant Sci 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen EM, Singh SK, Ghosh JS et al (2017) The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Sci Rep 7:43027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song S, Hao L, Zhao P et al (2019) Genome-wide identification, expression profiling and evolutionary analysis of auxin response factor gene family in potato (Solanum tuberosum Group Phureja). Sci Rep 9(1):1755

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Niu X, Fan M (2017) Genome-wide identification of cucumber green mottle mosaic virus-responsive microRNAs in watermelon. Adv Virol 162(9):2591–2602

    CAS  Google Scholar 

  • t Hoen PA, Ariyurek Y, Thygesen HH et al (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucl Acids Res 36(21):e141

    Article  Google Scholar 

  • Wang L, Du H, Wuyun TN (2016) Genome-wide identification of MicroRNAs and their targets in the leaves and fruits of eucommia ulmoides using high-throughput sequencing. Front Plant Sci 7:1632

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Shi T, Ni X et al (2018) The role of miR319a and its target gene TCP4 in the regulation of pistil development in Prunus mume. Genome 61(1):43–48

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wang B, Hua W et al (2017) De novo assembly and analysis of polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis. Int J Mol Sci 18(9):1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Peng D, Zhu J et al (2019) Transcriptome analysis of Polygonatum cyrtonema Hua: identification of genes involved in polysaccharide biosynthesis. Int J Mol Sci 15:65

    Google Scholar 

  • Wei R, Qiu D, Wilson IW et al (2015) Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genom 16:835

    Article  Google Scholar 

  • Wu J, Jiang Y, Liang Y et al (2019) Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Biochem PPB 137:179–188

    Article  PubMed  CAS  Google Scholar 

  • Wu HJ, Ma YK, Chen T et al (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucl Acids Res 40(Web Server issue):W22-8

    PubMed  Google Scholar 

  • Yelithao K, Surayot U, Lee JH et al (2016) RAW264.7 cell activating glucomannans extracted from rhizome of polygonatum sibiricum. Prev Nutr Food Sci 21(3):245–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng RF, Zhou JJ, Liu SR et al (2019) Genome-wide identification and characterization of SQUAMOSA-promoter-binding protein (SBP) genes involved in the flowering development of citrus clementina. Biomolecules 9(2):66

    Article  PubMed Central  Google Scholar 

  • Zhai R, Zhao Y, Wu M et al (2019) The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biol 19(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cao Y, Chen L et al (2015) A polysaccharide from Polygonatum sibiricum attenuates amyloid-beta-induced neurotoxicity in PC12 cells. Carbohyd Polym 117:879–886

    Article  CAS  Google Scholar 

  • Zhao X, Li J (2015) Chemical constituents of the genus Polygonatum and their role in medicinal treatment. Nat Prod Commun 10(4):683–688

    PubMed  Google Scholar 

  • Zhao P, Zhao C, Li X et al (2018b) The genus Polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol 214:274–291

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Zhang X, Qiu Z et al (2018a) De novo assembly and characterization of the xenocatantops brachycerus transcriptome. Int J Mol Sci 19(2):520

    Article  PubMed Central  Google Scholar 

  • Zhu X, Li Q, Lu F et al (2015) Antiatherosclerotic potential of rhizoma polygonati polysaccharide in hyperlipidemia-induced atherosclerotic hamsters. Drug Res 65(9):479–483

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Beijing Genomics Institute for assistance with experiments.

Funding

The financial support for the development and completion of this project was provided by startup funds through Natural Science Research Grant of Higher Education of Anhui Province (Grant Number KJ2019A0476, KJ2018ZD028) and Natural Science Foundation of Anhui Province of China (Grant Number 2008085MH268, 2108085MH315). The National Key Research and Development Program (Grant Number 2017YFC1701600) and the National project cultivation fund of Anhui University of Chinese Medicine (Grant Number 2020PY02) provided experimental support. Publication costs were funded by Outstanding Youth general Project of Anhui Institution of Higher Education (Grant Number gxyq2019030).

Author information

Authors and Affiliations

Authors

Contributions

Project design: J.W.W. Experiments and data analysis: K.L.M., S.X.Z., Z.L.Q., C.K.W., and Y.Y.S. Manuscript preparation: K.L.M. Preparation of plant materials: Q.S.Y. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiawen Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1417 kb)

Supplementary file2 (XLS 434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, K., Zhang, S., Zhao, L. et al. Identification, expression analysis, and potential roles of microRNAs in the regulation of polysaccharide biosynthesis in Polygonatum cyrtonema Hua. J. Plant Biochem. Biotechnol. 31, 925–937 (2022). https://doi.org/10.1007/s13562-022-00772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-022-00772-7

Keywords

Navigation