Skip to main content
Log in

On discrete tempered fractional calculus and its application

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Discrete tempered fractional calculus, as a fresh generalization of discrete fractional calculus, takes both the advantages of discrete fractional calculus and its tempered fractional counterpart, which has great potential value in the interpretation of special physical phenomena. However, its essential characteristics are far from clarifying. Meanwhile, the primary goal of this study is to enrich the vital characteristics of discrete tempered fractional calculus in the presence of required domains for diverse scenarios. First, the reciprocal properties of the tempered fractional summation and difference operators, as well as the discrete version of Taylor’s formula, are established. The formulae of the discrete Laplace transform for discrete tempered fractional calculus are also determined with the aid of discrete convolution. Then, the well-posedness of tempered fractional difference equation is investigated, along with the exploration on the corresponding Volterra summation equation, and the existence, uniqueness and continuous dependence as well. In the aspect of application, the criterion of Ulam–Hyers stability of tempered fractional difference equation on finite time interval is obtained in light of a novel discrete Gronwall inequality. Besides, all examples are showed to verify the effectiveness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., Laledj, N., Zhou, Y.: Existence and Ulam stability for implicit fractional \(q\)-difference equations. Adv. Differ. Equ. 2019, 480 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Abdeljawad, T., Atici, F.M.: On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012, 406757 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Abdeljawad, T., Banerjee, S., Wu, G.C.: Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption. Optik 218, 163698 (2020)

    Google Scholar 

  4. Atici, F.M., Eloe, P.W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I 2009(3), 1–12 (2009)

    MATH  Google Scholar 

  5. Baeumer, B., Meerschaert, M.M.: Tempered stable L\(\acute{e}\)vy motion and transient super-diffusion. J. Comput. Appl. Math. 233(10), 2438–2448 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Baleanu, D., Wu, G.C.: Some further results of the Laplace transform for variable-order fractional difference equations. Fract. Calc. Appl. Anal. 22(6), 1641–1654 (2019). https://doi.org/10.1515/fca-2019-0084

    Article  MathSciNet  MATH  Google Scholar 

  7. Cartea, Á., del-Castillo-Negrete, D.: Fractional diffusion models of option prices in markets with jumps. Phys. A 374(2), 749–763 (2007)

    Google Scholar 

  8. Cao, J.X., Li, C.P., Chen, Y.Q.: On tempered and substantial fractional calculus. In: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications, 1–6, Senigallia, Italy (2014)

  9. Chen, C.R., Bohner, M., Jia, B.G.: Ulam–Hyers stability of Caputo fractional difference equations. Math. Meth. Appl. Sci. 42(18), 7461–7470 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Chen, C.R., Mert, R., Jia, B.G., Erbe, L., Peterson, A.: Gronwall’s inequality for a nabla fractional difference system with a retarded argument and an application. J. Differ. Equ. Appl. 25(6), 855–868 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, J.F.: Fractional Difference Equation Theory. Xiamen University Press, Xiamen (2011). (in Chinese)

    Google Scholar 

  12. Diaz, J.B., Osier, T.J.: Differences of fractional order. Math. Comput. 28(125), 185–202 (1974)

    MathSciNet  Google Scholar 

  13. Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J.A.T., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 107(4), 3245–3270 (2022)

    Google Scholar 

  14. Fečkan, M., Pospíšil, M., Danca, M.-F., Wang, J.R.: Caputo delta weakly fractional difference equations. Fract. Calc. Appl. Anal. 25(6), 2222–2240 (2022). https://doi.org/10.1007/s13540-022-00093-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferreira, R.A.C.: Discrete weighted fractional calculus and applications. Nonlinear Dyn. 104(3), 2531–2536 (2021)

    Google Scholar 

  16. Fernandez, A., Ustaoğlu, C.: On some analytic properties of tempered fractional calculus. J. Comput. Appl. Math. 336, 112400 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Fu, H., Huang, L.L., Abdeljawad, T., Luo, C.: Tempered fractional calculus on time scale for discrete-time systems. Fractals 29(8), 2140033 (2021)

    MATH  Google Scholar 

  18. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Cham (2015)

    MATH  Google Scholar 

  19. Gray, H.L., Zhang, N.F.: On a new definition of the fractional difference. Math. Comput. 50(182), 513–529 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Haider, S.S., Rehman, M.U., Abdeljawad, T.: On Hilfer fractional difference operator. Adv. Differ. Equ. 2020, 122 (2020)

    MathSciNet  MATH  Google Scholar 

  21. He, J.W., Zhou, Y.: Stability analysis for discrete time abstract fractional differential equations. Fract. Calc. Appl. Anal. 24(1), 307–323 (2021). https://doi.org/10.1515/fca-2021-0013

    Article  MathSciNet  MATH  Google Scholar 

  22. Hein, J., McCarthy, S.M., Gaswick, N., McKain, B., Speer, K.: Laplace transforms for the nabla-difference operator. Panamer. Math. J. 21(3), 79–97 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Holm, M.T.: The Theory of Discrete Fractional Calculus: Development and Application. University of Nebraska-Lincoln, Nebraska (2011), Ph.D. dissertation

  24. Huang, L.L., Wu, G.C., Baleanu, D., Wang, H.Y.: Discrete fractional calculus for interval-valued systems. Fuzzy Set. Syst. 404, 141–158 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)

    MathSciNet  MATH  Google Scholar 

  26. Jung, S.M.: Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis. Springer, Berlin (2011)

    MATH  Google Scholar 

  27. Li, C., Deng, W.H.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42(3), 543–572 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Li, C., Deng, W.H., Zhao, L.J.: Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Discrete Contin. Dyn. B 24(4), 1989–2015 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Li, C.P., Ma, L., Xiao, H.: Anti-control of chaos in fractional difference equations. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V004T08A027, Portland, USA (2013)

  30. Li, X., Du, F.F., Anderson, D., Jia, B.G.: Monotonicity results for nabla fractional \(h\)-difference operators. Math. Meth. Appl. Sci. 44(2), 1207–1218 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Liu, X.G., Ma, L.: Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems. Appl. Math. Comput. 385, 125423 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Luo, D.F., Abdeljawad, T., Luo, Z.G.: Ulam–Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system. Turk. J. Math. 45(1), 456–470 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Ma, L.: Comparison theorems for Caputo–Hadamard fractional differential equations. Fractals 27(3), 1950036 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Ma, L.: On the kinetics of Hadamard-type fractional differential systems. Fract. Calc. Appl. Anal. 23(2), 553–570 (2020). https://doi.org/10.1515/fca-2020-0027

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, L., Huang, C.B.: Comparative analysis of correlation and Kaplan–Yorke dimensions for discrete-time fractional systems. Int. J. Bifurcation Chaos 32(15), 2250222 (2022)

    MathSciNet  Google Scholar 

  36. Machado, J.T., Duarte, F.B., Duarte, G.M.: Fractional dynamics in financial indices. Int. J. Bifurcation Chaos 22(10), 1250249 (2012)

    MathSciNet  Google Scholar 

  37. Meerschaert, M.M., Sabzikar, F.: Tempered fractional Brownian motion. Stat. Probab. Lett. 83(10), 2269–2275 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35(17), L17403 (2009)

    Google Scholar 

  39. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  40. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)

    MATH  Google Scholar 

  41. Morgado, M.L., Rebelo, M.: Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 20(5), 1239–1262 (2017). https://doi.org/10.1515/fca-2017-0065

    Article  MathSciNet  MATH  Google Scholar 

  42. Sabzikar, F., Meerschaert, M.M., Chen, J.H.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Suwan, I., Owies, S., Abdeljawad, T.: Monotonicity results for \(h\)-discrete fractional operators and application. Adv. Differ. Equ. 2018, 207 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)

    MATH  Google Scholar 

  45. Wei, Y.H., Chen, Y.Q., Wang, Y., Chen, Y.Q.: Some fundamental properties on the sampling free nabla Laplace transform. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, USA (2019)

  46. Wei, Y.H., Chen, Y.Q., Wei, Y.D., Zhao, X.: Lyapunov stability analysis for nonlinear nabla tempered fractional order systems. Asian J. Control Online (First published, 04 December 2022). https://doi.org/10.1002/asjc.3003

  47. Wei, Y.H., Gao, Q., Liu, D.Y., Wang, Y.: On the series representation of nabla discrete fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 69, 198–218 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Wu, G.C., Deng, Z.G., Baleanu, D., Zeng, D.Q.: New variable-order fractional chaotic systems for fast image encryption. Chaos 29(8), 083103 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Xiao, H., Ma, Y.T., Li, C.P.: Chaos in fractional difference equation. In: 2012 IEEE/ASME 8th International Conference on Mechatronic and Embedded Systems and Applications, 319–324, Suzhou, China (2012)

  50. Xiao, H., Ma, Y.T., Li, C.P.: Chaotic vibration in fractional maps. J. Vib. Control 20(7), 964–972 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Zeng, S.D., Baleanu, D., Bai, Y.R., Wu, G.C.: Fractional differential equations of Caputo–Katugampola type and numerical solutions. Appl. Math. Comput. 315, 549–554 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Zhou, P., Ma, J., Tang, J.: Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 100(3), 2353–2364 (2020)

    Google Scholar 

Download references

Acknowledgements

Projects supported by the National Natural Science Foundation of China (Grant No. 11902108) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2021HGTB0125). The authors are grateful to the anonymous referees for careful reading of this manuscript and valuable comments. And the authors would like to thank the help from the editors too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Fan, D. On discrete tempered fractional calculus and its application. Fract Calc Appl Anal 26, 1384–1420 (2023). https://doi.org/10.1007/s13540-023-00163-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00163-2

Keywords

Mathematics Subject Classification

Navigation