Skip to main content
Log in

Concentration phenomenon of solutions for fractional Choquard equations with upper critical growth

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we focus on the following fractional Choquard equation involving upper critical exponent

$$\begin{aligned} \varepsilon ^{2s}(-\varDelta )^su+V(x)u=P(x)f(u)+\varepsilon ^{\mu -N}Q(x)[|x|^{-\mu }*|u|^{2_{\mu ,s}^*}]|u|^{2_{\mu ,s}^*-2}u, \ x \in {\mathbb {R}}^N, \end{aligned}$$

where \(\varepsilon >0\), \(0<s<1\), \((-\varDelta )^s\) denotes the fractional Laplacian of order s, \(N>2s\), \(0<\mu <N\) and \(2_{\mu ,s}^*=\frac{2N-\mu }{N-2s}\). Under suitable assumptions on the potentials V(x), P(x) and Q(x), we obtain the existence and concentration of positive solutions and prove that the semiclassical solutions \(w_\varepsilon \) with maximum points \(x_\varepsilon \) concentrating at a special set \({\mathcal {S}}_p\) characterized by V(x), P(x) and Q(x). Furthermore, for any sequence \(x_\varepsilon \rightarrow x_0 \in {\mathcal {S}}_p\), \(v_\varepsilon (x):=w_\varepsilon (\varepsilon x+x_\varepsilon )\) converges in \(H^s({\mathbb {R}}^N)\) to a ground state solution v of

$$\begin{aligned} (-\varDelta )^sv+V(x_0)v=P(x_0)f(v)+Q(x_0)[|x|^{-\mu }*|v|^{2_{\mu ,s}^*}]|v|^{2_{\mu ,s}^*-2}v, \ x \in {\mathbb {R}}^N. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, V.: Multiplicity and concentration results for a fractional Choquard equation via penalization method. Potential Anal. 50(1), 55–82 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ashyralyev, A., Hicdurmaz, B.: Bounded solutions of second order of accuracy difference schemes for semilinear fractional Schrödinger equations. Fract. Calc. Appl. Anal. 23(6), 1723–1761 (2020). https://doi.org/10.1515/fca-2020-0086

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Miyagaki, O.H.: Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R}}^N\) via penalization method. Calc. Var. 55, Art. 47 (2016)

  4. Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differential Equations 263(7), 3943–3988 (2017)

    Article  MathSciNet  Google Scholar 

  5. Belchior, P., Bueno, H., Miyagaki, O.H., Pereira, G.A.: Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay. Nonlinear Anal. 164, 38–53 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  7. Guo, Q., He, X.: Semiclassical states for fractional Schrödinger equations with critical growth. Nonlinear Anal. 151, 164–186 (2017)

    Article  MathSciNet  Google Scholar 

  8. Guo, L., Hu, T.: Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations with potential well. Math. Method Appl. Sci. 41(3), 1145–1161 (2018)

    Article  MathSciNet  Google Scholar 

  9. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271(1), 107–135 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gao, F., Yang, M.: The Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61(7), 1219–1242 (2018)

    Article  MathSciNet  Google Scholar 

  11. He, X., Zou, W.: Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. 55, Art. 91 (2016)

  12. Lieb, E.H., Loss, M.: Analysis. 2nd Ed., Grad. Stud. Math. Vol. 14, Amer. Math. Soc. Providence, RI (2001)

  13. Li, L., Tersian, S.: Fractional problems with critical nonlinearities by a sublinear perturbation. Fract. Calc. Appl. Anal. 23(2), 484–503 (2020). https://doi.org/10.1515/fca-2020-0023

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Q., Teng, K., Wu, X.: Ground states for fractional Schrödinger equations with critical growth. J. Math. Phys. 59(3), Art. 033504 (2018)

  15. Li, Q., Teng, K., Wu, X., Wang, W.: Existence of nontrivial solutions for fractional Schrödinger equations with critical or supercritical growth. Math. Method Appl. Sci. 42(5), 1480–1487 (2019)

    Article  Google Scholar 

  16. Li, Q., Teng, K., Zhang, J.: Ground state solutions for fractional Choquard equations involving upper critical exponent. Nonlinear Anal. 197, Art. 111846 (2020)

  17. Li, Q., Zhang, J., Wang, W., Teng, K.: Existence of nontrivial solutions for fractional Choquard equations with critical or supercritical growth. Appl. Anal. 101(3), 849–857 (2022)

    Article  MathSciNet  Google Scholar 

  18. Mukherjee, T., Sreenadh, K.: Fractional Choquard equation with critical nonlinearities. NoDEA Nonlinear Differential Equations Appl. 24(6), Art. 63, 34 pp. (2017)

  19. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  20. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc. 367(9), 6557–6579 (2015)

    Article  MathSciNet  Google Scholar 

  21. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  22. Ma, P., Zhang, J.: Existence and multiplicity of solutions for fractional Choquard equations. Nonlinear Anal. 164, 100–117 (2017)

    Article  MathSciNet  Google Scholar 

  23. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  24. Simon, T.: On the Green function of the killed fractional Laplacian on the periodic domain. Fract. Calc. Appl. Anal. 24(5), 1629–1635 (2021). https://doi.org/10.1515/fca-2021-0069

    Article  MathSciNet  MATH  Google Scholar 

  25. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    MATH  Google Scholar 

  26. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27(2), 187–207 (2014)

    Article  MathSciNet  Google Scholar 

  27. Shang, X., Zhang, J.: Concentrating solutions of nonlinear fractional Schrödinger equation with potentials. J. Differential Equations 258(4), 1106–1128 (2015)

    Article  MathSciNet  Google Scholar 

  28. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  29. Zhang, W., Zhang, J., Mi, H.: On fractional Schrödinger equation with periodic and asymptotically periodic conditions. Comput. Math. Appl. 74(6), 1321–1332 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhang, J., Zhang, W., Tang, X.: Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete Contin. Dyn. Syst. 37(8), 4565–4583 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was done when the first author visited Department of Mathematics, Tsinghua University under the support of the National Natural Science Foundation of China (12026228), and he thanks Professor Wenming Zou for his careful guidance. The first author is also supported by the National Natural Science Foundation of China (11801153; 12026227; 12161033) and the Yunnan Province Applied Basic Research for General Project (2019FB001) and Youth Outstanding-notch Talent Support Program in Yunnan Province and the project funds of Xingdian Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houwang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, M. & Li, H. Concentration phenomenon of solutions for fractional Choquard equations with upper critical growth. Fract Calc Appl Anal 25, 1073–1107 (2022). https://doi.org/10.1007/s13540-022-00052-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00052-0

Keywords

Mathematics Subject Classification

Navigation