Skip to main content
Log in

OSL Responses of Halloysite Nanotubes and Their Composites with Silver Nanoparticles

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The present work characterized pure halloysite clay mineral nanotubes (HNT) and their composites with silver nanoparticles (AgNPs) as ionizing radiation dosimeters using the optically stimulated luminescence (OSL) phenomena. We also explored the HNT’s capacity to scavenge heavy metals from solutions to incorporate silver ions in its structure and produce silver nanoparticles in the HNTs, aiming to increase the HNT’s OSL intensity. Reflectance spectra in the UV-visible region, X-ray diffraction, and transmission electron microscopy were performed to confirm the formation of AgNPs attached to the nanotubes. Furthermore, the OSL signals revealed an enhanced OSL intensity in samples containing AgNPs, possibly associated with the silver nanostructures’ plasmonic properties. Therefore, HNTs and their composites are alternative materials for applications in OSL dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. G. Kiani, High removal capacity of silver ions from aqueous solution onto halloysite nanotubes. Appl. Clay Sci. 90, 159–164 (2014). https://doi.org/10.1016/j.clay.2014.01.010

    Article  Google Scholar 

  2. P.C Ferrari, F.F. Araujo, S.A. Pianaro, Halloysite nanotubes-polymeric nanocomposites: characteristics, modifications and controlled drug delivery approaches. Cerâmica. 63(368), (2017). https://doi.org/10.1590/0366-69132017633682167

  3. G. Brindley, K. Robinson, D. Macewan, The clay minerals halloysite and meta-halloysite. Nature 157, 225–226 (1946). https://doi.org/10.1038/157225b0

    Article  ADS  Google Scholar 

  4. E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wei, K. Ariga, Y. Lvov, Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl. Mater. Interfaces 3(10), 4040–4046 (2011). https://doi.org/10.1021/am200896d

    Article  Google Scholar 

  5. G. Jock Churchman, P. Pasbakhsh, S. Hillier, The rise and rise of halloysite. Clay Miner. 51(3), 303–308 (2016). https://doi.org/10.1180/claymin.2016.051.3.00

    Article  ADS  Google Scholar 

  6. B.R. Angel, W.E.J. Vincent, Electron spin resonance studies of iron oxides associated with the surface of kaolins. Clays Clay Miner. 26, 263–272 (1978). https://doi.org/10.1346/CCMN.1978.0260402

    Article  ADS  Google Scholar 

  7. B. Angel, J. Jones, P. Hall, Electron spin resonance studies of doped synthetic kaolinite. I. Clay Minerals 10(4), 247–255 (1974). https://doi.org/10.1180/claymin.1974.010.4.03

    Article  ADS  Google Scholar 

  8. J. Jones, B. Angel, P. Hall, Electron spin resonance studies of doped synthetic kaolinite. II. Clay Minerals 10(4), 257–270 (1974). https://doi.org/10.1180/claymin.1974.010.4.04

    Article  ADS  Google Scholar 

  9. M.M. Isikawa, A.C.A. Assunção, O. Baffa, E.J. Guidelli, Enhanced optical cross-section of radiation induced defect centers under plasmon resonance conditions: Shifting stimulation wavelength of optically stimulated luminescence dosimeters. J. Lumin.Lumin. (2021). https://doi.org/10.1016/j.jlumin.2020.117841

    Article  Google Scholar 

  10. E. Guidelli, O. Baffa, D. Clarke, Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence. Sci. Rep. 5, 14004 (2015). https://doi.org/10.1038/srep14004

    Article  ADS  Google Scholar 

  11. H. Yu, Y. Peng, Y. Yang et al., Plasmon-enhanced light–matter interactions and applications npj. Comput. Mater. 5, 45 (2019). https://doi.org/10.1038/s41524-019-0184-1

    Article  Google Scholar 

  12. Q. Wang, F. Song, S. Lin et al., Effect of silver nanoparticles with different shapes on luminescence of samarium complex at two different excitation wavelengths. J. Nanopart. Res.Nanopart. Res. 13, 3861–3865 (2011). https://doi.org/10.1007/s11051-011-0338-7

    Article  ADS  Google Scholar 

  13. C.R. Rekha, V.U. Nayar, K.G. Gopchandran, Synthesis of highly stable silver nanorods and their application as SERS substrates. J. Sci. Adv. Mater. Devices. 3(2), 196–205 (2018). https://doi.org/10.1016/j.jsamd.2018.03.003

    Article  Google Scholar 

  14. B.K. Mehta et al., Green synthesis of silver nanoparticles and their characterization by XRD. J. Phys. Conf. Ser. 836, 012050 (2017). https://doi.org/10.1088/1742-6596/836/1/012050

    Article  Google Scholar 

  15. N.N.A. Talib et al., Depolymerisation of liquid epoxidized natural rubber (LENR) using lanthanum hydroxide (La(OH)3)-HNT Catalyst. IOP. Conf. Ser. Mater. Sci. Eng. 509, 012104 (2019). https://doi.org/10.1088/1757-899X/509/1/012104

    Article  Google Scholar 

  16. E.G. Yukihara, S.W.S. McKeever, Optically stimulated luminescence (OSL) dosimetry in medicine. Phys. Med. Biol. 53, R351 (2008). https://doi.org/10.1088/0031-9155/53/20/R01

    Article  ADS  Google Scholar 

  17. E.J. Guidelli, A.P. Ramos, E.D. Maria, P.N. Zaniquelli, O. Baffa, Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Appl. Mater. Interfaces 4(11), 5844–5851 (2012). https://doi.org/10.1021/am3014899

    Article  Google Scholar 

  18. F.H. ATTIX, Introduction to Radiological Physics and Radiation Dosimetry. John Wiley & Sons, 1991, 628 p

  19. E. Yukihara, E. Yoshimura, T. Lindstrom, S. Ahmad, G. Mardirossian, High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3: C dosimeters. Phys. Med. Biol. 50, 5619 (2005). https://doi.org/10.1088/0031-9155/50/23/014

    Article  Google Scholar 

  20. E.J. Guidelli, A.P. Ramos, O. Baffa, Optically stimulated luminescence under plasmon resonance conditions enhances X-ray detection. Plasmonics 9, 1049–1056 (2014). https://doi.org/10.1007/s11468-014-9713-4

    Article  Google Scholar 

  21. S. Kamyar, M. Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, M. Zargar, Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed.Nanomed. 7, 5603–5610 (2012). https://doi.org/10.2147/IJN.S36786

    Article  Google Scholar 

  22. T. Barot, M.E. Phd, Deepak & Kulkarni, Pratik., Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 6, e03601 (2020). https://doi.org/10.1016/j.heliyon.2020.e03601

    Article  Google Scholar 

  23. A. Alhuthali, I.M. Low, Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J. Mater. Sci. 48, 4260–4273 (2013). https://doi.org/10.1007/s10853-013-7240-x

    Article  ADS  Google Scholar 

  24. G. Hu, G. Liang, W. Zhang, W. Jin, Y. Zhang, Q. Chen, Y. Cai, W. Zhang, Silver nanoparticles with low cytotoxicity: controlled synthesis and surface modification with histidine. J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-017-1940-6

    Article  Google Scholar 

  25. M. Barakat, R. Kumar, M. Balkhyour, Md. Taleb, Novel Al 2 O 3 /GO/halloysite nanotube composite for sequestration of anionic and cationic dyes. RSC Adv. 9, 13916–13926 (2019). https://doi.org/10.1039/C9RA02246E

    Article  ADS  Google Scholar 

  26. E.G. Yukihara, G.O. Sawakuchi, S. Guduru, S.W.S. McKeever, R. Gaza, E.R. Benton, N. Yasuda, Y. Uchihori, H. Kitamura, Application of the optically stimulated luminescence (OSL) technique in space dosimetry. Radiat. Meas.. Meas. 41(9–10), 1126–1135 (2006). https://doi.org/10.1016/j.radmeas.2006.05.027

    Article  ADS  Google Scholar 

  27. I.S Fatimah, R. Herianto, Physicochemical characteristics and photocatalytic activity of silver nanoparticles-decorated on natural halloysite (an aluminosilicate clay). Orient. J. Chem. 34(2), (2018). https://doi.org/10.13005/ojc/340232

  28. F.P. Capia, E.J. Guidelli, Enhanced thermoluminescence, radioluminescence, and optically stimulated luminescence from lithium fluoride and silver nanoparticles composites. Optical Materials: X (2024). https://doi.org/10.1016/j.omx.2023.100287

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian funding agencies CNPq (155796/2020-8), CAPES, and FAPESP (2021/00786-0). The authors thank E. de Paula for technical assistance. E. A. Santos acknowledges and V. F. de Lima for emotional support.

Author information

Authors and Affiliations

Authors

Contributions

E. A. Santos and E. J. Guidelli wrote the main manuscript text, E. A. Santos prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Éder José Guidelli.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, E.A., Guidelli, É.J. OSL Responses of Halloysite Nanotubes and Their Composites with Silver Nanoparticles. Braz J Phys 54, 79 (2024). https://doi.org/10.1007/s13538-024-01440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01440-y

Keywords

Navigation