Skip to main content

Differentiation Between Natural Quartz-Based on Thermoluminescence Properties

  • Chapter
  • First Online:
Advances in Minerals Research

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 105 Accesses

Abstract

Numerous naturally occurring minerals serve as thermoluminescent dosimeter (TLD) materials. The thermoluminescence (TL) characteristics of these minerals are influenced by the specific type and concentration of trace element impurities they contain. Mineral formation and impurity concentration are both influenced by mineral's geological and geographical origin. Silicate minerals, including quartz and feldspar, along with certain oxide minerals like aluminum oxides, distinctly exhibit TL peaks in glow curves resulting from traps formed through thermal treatment and irradiation. Quartz (SiO2), a particularly abundant silicate mineral in the Earth's crust, forms under various geological conditions, including magmatic, hydrothermal, sedimentary, and metamorphic processes. It plays a crucial role as a rock-forming mineral across all rock types (igneous, sedimentary, and metamorphic). Natural quartz, one of the dosimeters utilized in luminescence investigations, is significantly important for assessing the radiation record of materials in a wide range of applications including evaluating the authenticity of artifacts or retrospective dosimetry (nuclear accident). This chapter discusses TL phenomena and types of luminescence. The kinetic models which describe the TL phenomena were included. Different methods used to analyze TL glow curves and extracting the kinetic parameters were deliberated. The physical properties and the application of quartz were declared in this chapter. Thermoluminescence phenomena and Dosimetric parameters of Quartz collected from various places were shown clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Kittel, Introduction to Solid State Physics (Wiley Inc., 2005), pp. 163–164

    Google Scholar 

  2. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1988), pp. 5–7

    Google Scholar 

  3. S.W.S McKeever, M. Moscovitch, P.D. Townsend, Thermoluminescence Dosimetry Materials: Properties and Uses (Nucl. Tech. Pub., 1995), pp. 64–65

    Google Scholar 

  4. R. Chen, S.W.S McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, 1997), pp. 2–21

    Google Scholar 

  5. R.B. Laughlin, Phys. Rev. B 22, 3021 (1980)

    Article  CAS  Google Scholar 

  6. S. Bhushan, Nucl. Trac. 10, 215 (1985)

    CAS  Google Scholar 

  7. A.J.J. Bos, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 184(1–2), 3–28 (2001)

    Google Scholar 

  8. A.H. Carter, Classical and Statistical Thermodynamics (Prentice Hall, 2000), pp. 361–364

    Google Scholar 

  9. J.T. Randall, M.H.F. Wilkins, Proc. R. Soc. Lond. A184, 366 (1945)

    Google Scholar 

  10. V. Pagonis, G. Kitis, C. Furetta, Numerical and Pratical Exercises in Thermoluminescence (Springer, 2006), pp. 7–8

    Google Scholar 

  11. G.F.J. Garlick, A.F. Gibson, Proc. Phys. Soc. 60, 574 (1948)

    Article  CAS  Google Scholar 

  12. C.E. May, J.A. Partridge, J. Chem. Phys. 40, 1401 (1964)

    Article  CAS  Google Scholar 

  13. N. Chandrasekhar, K. Bishal Singh, R.K. Gartia, J. Rare Earths 35, 733 (2017).

    Google Scholar 

  14. A. Halperin, A. Braner, Phys. Rev. 117, 408 (1960)

    Article  CAS  Google Scholar 

  15. L.D. Miller, R.H. Bube, J. Appl. Phys. 41, 3687 (1970)

    Article  CAS  Google Scholar 

  16. W. Hoogenstraaten, Philips. Res. Rep. 13, 515 (1958)

    CAS  Google Scholar 

  17. R. Chen, S.A.A. Winer, J. Appl. Phys. 41, 5227 (1970)

    Article  CAS  Google Scholar 

  18. T.S.C. Singh, P.S. Mazumdar, R.K. Gartia, J. Appl. Phys. 23, 562 (1990)

    CAS  Google Scholar 

  19. J.T. Randall, M.H.F. Wilkins, Proc. R. Soc. A: Math. Phys. Eng. Sci. 184, 347 (1945)

    Google Scholar 

  20. S.V. Moharil, S.P. Kathuria, J. Appl. Phys. 16, 425 (1983)

    CAS  Google Scholar 

  21. N. Takeuchi, K. Inabe, H. Nanto, J. Mater. Sci. 10, 159 (1975)

    Article  CAS  Google Scholar 

  22. R. Chen, J. Elect. Chem. Soc. 116, 1254 (1969)

    Article  CAS  Google Scholar 

  23. M. Balarin, Phys. Stat. Sol. A 31, 111 (1975)

    Article  Google Scholar 

  24. P.L. Land, J. Phys. Chem. Sol. 30, 1693 (1969)

    Article  CAS  Google Scholar 

  25. S.D. Singh, M. Bhattacharya, W.S. Singh, W.G. Devi, A.K.M. Singh, P.S. Mazumdar, Ind. J. Phys. 73A, 471 (1999)

    CAS  Google Scholar 

  26. J. Götze, Y. Pan, A. Müller, Miner. Mag. 85(5), 639–664 (2021)

    Article  Google Scholar 

  27. J. Götze, Miner. Mag. 73, 645 (2009)

    Article  Google Scholar 

  28. J. Götze, R. Möckel, Quartz Deposits Mineralogy and Analytics (Springer, Berlin Heidelberg, 2012), pp. 307–347

    Book  Google Scholar 

  29. W.A. Deer, R.A. Howie, J. Zussman, Rock-Forming Minerals, vol. 4 (Longmans, London, 1963), pp. 435–436

    Google Scholar 

  30. J.M. Kalita, G. Wary, Nucl. Instr. Meth. Phys. Res. B 383, 177 (2016)

    Article  CAS  Google Scholar 

  31. S. Farouk, H. El-Azab, A. Gad, H. El-Nashar, N. El-Faramawy, Lumin. 35, 586 (2020)

    CAS  Google Scholar 

  32. S. Farouk, A. Gad, H. El-Azab, H. El-Nashar, N. El-Faramawy, Radiat. Phys. Chem. 18, 109333 (2021)

    Article  Google Scholar 

  33. O. Antohi-Trandafir, A. Timar-Gabor, A. Vulpoi, R. Bălc, J. Longman, D. Veres, S. Simon, Radiat. Meas. 109, 1 (2018)

    Article  CAS  Google Scholar 

  34. T.M. Farias, S. Watanabe, J. Lumin. 132, 2684 (2012)

    Article  CAS  Google Scholar 

  35. S. Thomas, M.L. Chithambo, J. Lumin. Lumin. 197, 406 (2018)

    Article  CAS  Google Scholar 

  36. P.L. Guzzo, L.B.F. Souza, V.S.M. Barros, H.J. Khoury, J. Lumin. Lumin. 188, 118 (2017)

    Article  CAS  Google Scholar 

  37. P.L. Guzzo, L.B.F. Souza, H.J. Khoury, Radiat. Meas. 46, 1421 (2011)

    Article  CAS  Google Scholar 

  38. S. Nsengiyumva, M.L. Chithambo, L. Pichon, Radiat. Eff. Def. Sol. 169, 919 (2014)

    Article  CAS  Google Scholar 

  39. A.J.J. Bos, N.R.J. Poolton, J. Wallinga, A. Bessiere, P. Dorenbos, Radiat. Meas. 45, 343 (2010)

    Article  CAS  Google Scholar 

  40. A. Mandowski, A.J.J. Bos, Radiat. Meas. 46, 1376 (2011)

    Article  CAS  Google Scholar 

  41. R. Chen, J.L. Lawless, V. Pagonis, Radiat. Meas. 47, 809 (2012)

    Article  CAS  Google Scholar 

  42. V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, P. Woglam, Radiat. Meas. 51–52, 40 (2013)

    Article  Google Scholar 

  43. R. Chen, V. Pagonis, Radiat. Meas. 106, 20 (2017)

    Article  CAS  Google Scholar 

  44. R. Zhou, M. Wei, B. Song, Y. Zhang, Q. Zhao, B. Pan, T. Li, Nucl. Instr. Meth. Phys. Res. B 375, 32 (2016)

    Article  CAS  Google Scholar 

  45. J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganiccompounds (Butterworths, London, 1975), pp. 291–292

    Google Scholar 

  46. C. Schmidt, A. Chruscinska, M. Fasoli, M. Biernacka, S. Kreutzer, G.S. Polymeris, D.C.W. Sanderson, A. Cresswell, G. Adamiec, M. Martini, J. Lumin. 250, 119070 (2022)

    Article  CAS  Google Scholar 

  47. S. Thomas, M.L. Chithambo, J. Lumin. 204, 603 (2018)

    Article  CAS  Google Scholar 

  48. T. Ngoc, H.V. Tuyen, L.A. Thi, L.X. Hung, N.X. Ca, L.D. Thanh, P.V. Do, N.M. Son, N.T. Thanh, V.X. Quang, Radiat. Meas. 141, 106539 (2021)

    Article  CAS  Google Scholar 

  49. A.K. Sandhu, O.P. Pandey, J. Mat. Sci.: Mat. Elec. 32, 20767 (2021)

    CAS  Google Scholar 

  50. F.S. Lameiras, in Infrared Radiation, ed. by V. Morozhenko (IntechOpen, 2012), pp. 41–56

    Google Scholar 

  51. M. EzzEl Din, A.M. Abouzeid, Kh. El maadawy, A.M. Khalid, R.E. El Sherif, J. Mining World Express (MWE) 5, 9 (2016)

    Google Scholar 

  52. I.A. El Kassas, F.S. Bakhit, Qatar Univ. Sci. Bull. 9, 227 (1989)

    Google Scholar 

  53. A. Osman, H. Kucha, A. Piestrzynski, Mieral. Polonica 28, 87 (1997)

    Google Scholar 

  54. M. El-Kinawy, H. El-Nashar, N. El-Faramawy, SN. Appl. Sci. 1, 834 (2019)

    Article  Google Scholar 

  55. C. Furetta, F. Santopietro, C. Sanipoli, G. Kitis, Appl. Radiat. Isot. 55, 533 (2001)

    Article  CAS  Google Scholar 

  56. S.El Gaby, F.K. List and R. Tehrani, in The Pan-African Belt of Northeast Africa and Adjacent Area: Tectonic Evolution and Economic Aspects of a Late Proterozoic Orogen, ed. by S. El Gaby, R.O. Greiling (Earth Evolution Science Viewing, 1988), pp. 17–70

    Google Scholar 

  57. M.S. Amin, Econ. Geol. 42, 637 (1947)

    Article  CAS  Google Scholar 

  58. S.W.S. Mckeever, Nucl. Instr. Meth. 175, 19 (1980)

    Article  CAS  Google Scholar 

  59. C. Furetta, Handbok of Thermoluminescence (World Scientific, Singapore, 2003), pp. 444–447

    Book  Google Scholar 

  60. N. El-Faramawy, A. Gad, H. El-Azab, S. Farouk, J. Mater. Res. 37, 3784 (2022)

    Article  CAS  Google Scholar 

  61. R.R. Dawam, M.L. Chithambo, Rad. Meas. 120, 47 (2018)

    Article  CAS  Google Scholar 

  62. R.R. Dawam, F.B. Masok, S.B. Fierkwap, J. Lumin. 233, 117918 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil El-Faramawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farouk, S., Gad, A., El-Faramawy, N. (2024). Differentiation Between Natural Quartz-Based on Thermoluminescence Properties. In: Ikhmayies, S.J. (eds) Advances in Minerals Research. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-49175-7_4

Download citation

Publish with us

Policies and ethics