Skip to main content
Log in

Dielectric Study of Nitriles Using Time-Domain Reflectometry

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Dielectric studies of propionitrile (PPN) and butyronitrile (BTN) with 1,4-dioxane (DX) have been obtained at 25 °C temperature in the frequency range from 10 MHz to 30 GHz using the time-domain reflectometry method. The frequency-dependent complex permittivity spectra (CPS) of PPN and BTN with DX mixtures were fitted to the Harvilik-Nigami equation. The least squares fit method was used to determine the dielectric parameters of binary mixtures. The interaction of nitriles (PPN and BTN) with non-polar dioxane solvents through dipole–dipole and heteromolecular hydrogen bonding has been discussed using excess dielectric properties, thermodynamic parameters, Kirkwood correlation factor, and Bruggeman factor. These studies provide information on the intermolecular and intramolecular interactions between solutes and solvent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.C. Mehrotra, A.C. Kumbharkhane, A.S. Chaudhari, Binary polar liquids, 1st edn. (Elsevier, 2017)

    Google Scholar 

  2. N.K. Karthick, G. Arivazhagan, A.C. Kumbharkhane, Y.S. Joshi, P.P. Kannan, Time domain reflectometric and spectroscopic studies on toluene+ butyronitrile solution. J. Mol. Struct. 1108, 203–208 (2016)

    Article  ADS  Google Scholar 

  3. D.J.S. Anand Karunakaran, T. Ganesh, M.M. Silvester, Dielectric properties and analysis of H-bonded interaction study in complex systems of binary and ternary mixtures of polyvinyl alcohol with water and DMSO. Fluid Phase Equilib. 382, 300–306 (2014)

    Article  Google Scholar 

  4. Y.S. Joshi, D.N. Rander, K.S. Kanse, Dielectric relaxation and molecular interaction study of aqueous amides. Ind. J. Pure Appl. Phys. 54, 621–628 (2016)

    Google Scholar 

  5. D.R. Lide (ed.), CRC handbook of chemistry and physics, 87th edn. (Taylor and Francis, 2007)

  6. S.N. Helmbe, M.P. Lokhande, A.C. Kumbharkhane, S.C. Mehrotra, S.C. Doraiswamy, Dielectric studies of aqueous solution of acetonitrile. PRAMANA J. Phys. 44, 405–410 (1995)

    Article  ADS  Google Scholar 

  7. A.R. Deshmukh, A.C. Kumbharkhane, Dielectric relaxation studies of aqueous primary amines using a time domain reflectometry. Ind. J. Phys. 96(11), 3105–3115 (2022)

    Article  Google Scholar 

  8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988972/

  9. https://en.wikipedia.org/wiki/Propionitrile

  10. H.V.T. Nguyen, A.B. Faheem, K. Kwak, K.K. Lee, Propionitrile as a single organic solvent for high voltage electric double-layer capacitors. J. Power. Sour. 463, 228134 (2020)

    Article  Google Scholar 

  11. K. Rajagopal, S. Chenthilnath, A.K. Nain, Physicochemical studies of molecular interactions in binary mixtures of toluene with some aliphatic nitriles at different temperatures. J. Mol. Liquids 151(1), 23–29 (2010)

    Article  Google Scholar 

  12. N.K. Karthick, G. Arivazhagana, A.C. Kumbharkhane, Y.S. Joshi, P.P.J. Kannana, Time domain reflectometric study on toluene+ propionitrile binary mixture. Phys. Chem. Liq. 54(6), 779–785 (2016)

    Article  Google Scholar 

  13. K. Rajagopal, S. Chenthilnath, Molecular interaction studies and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of toluene with homologous nitriles at different temperatures. Thermochim. Acta 498, 45–53 (2010)

    Article  Google Scholar 

  14. K. Rajagopal, S. Chenthilnath, A.K. Nain, Excess parameter studies on binary liquid mixtures of 2-methyl-2-propanol with aliphatic nitriles at different temperatures. J. Mol. Liq. 160(2), 72–80 (2011)

    Article  Google Scholar 

  15. N.K. Karthick, G. Arivazhagan, R. Shanmugam, FTIR spectroscopic studies and DFT calculations on the toluene-propionitrile binary system. J. Mol. Struct. 1173, 456–461 (2018)

    Article  ADS  Google Scholar 

  16. https://www.researchgate.net/publication/370264814

  17. https://en.wikipedia.org/wiki/Main_Page

  18. J.P. Gabriel, E. Thoms, A. Guiseppi-Elie, M.D. Ediger, R. Richert, A liquid with distinct metastable structures: Supercooled butyronitrile. J. Chem. Phys. 156(4), 044501 (2022)

    Article  ADS  Google Scholar 

  19. https://escholarship.org/content/qt7tx308p6/qt7tx308p6_noSplash_b8c32ffe62f8ecbbb6539a00fa946b23.pdf

  20. N.P. Garad, S.H. Saknure, A.G. Gubre, A.C. Kumbharkhane, Study of dielectric relaxation and hydrogen bonding interaction of 1, 4-Butanediol-1, 4-Dioxane mixture using TDR technique. Ind. J. Pure Appl. Phy. 61, 158–164 (2023)

    Google Scholar 

  21. A.G. Gubre, A.C. Kumbharkhane, Dielectric relaxation and hydrogen bonding studies of chlorobutane-dioxane mixtures using a time domain technique. J. Ind. Chem. Soc. 100(6), 101016 (2023)

    Article  Google Scholar 

  22. G.R. Mahajan, A.C. Kumbharkhane, Dielectric relaxation study of N-methylformamide in 1, 4-dioxane solvent using time domain reflectometry technique up to 30 GHz. Ind. J. Pure Appl. Phys. 56, 669–676 (2018)

    Google Scholar 

  23. B.D. Watode, P.G. Hudge, M.N. Shinde, R.B. Talware, A.C. Kumbharkhane, Dielectric relaxation study of aniline, N-methylaniline and N, N-dimethylaniline and alcohol in 1, 4-dioxane using picosecond time-domain reflectometry. Phys. Chem. Liq. 53(2), 252–263 (2015)

    Article  Google Scholar 

  24. A.R. Deshmukh, R.V. Shinde, S.A. Ingole, A.W. Pathan, M.P. Lokhande, A.V. Sarode, A.C. Kumbharkhane, Dielectric relaxation and hydrogen bonding interaction of solvents using time domain reflectometry technique from 10 MHz to 50 GHz. Ind. J. Pure Appl. Phys. 56, 346–352 (2018)

    Google Scholar 

  25. S.H. Saknure, N.P. Garad, A.G. Gubre, Y.S. Joshi, A.C. Kumbharkhane, Dielectric relaxation studies of cellulose-water mixtures using time and frequency domain technique. Ind. J. Pure Appl. Phys. 61, 27–32 (2023)

    Google Scholar 

  26. S. Havriliak, S. Negami, A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. 14, 99–117 (1966)

    Google Scholar 

  27. K.S. Kanse, S.D. Chavan, A.C. Kumbharkhane, S.C. Mehrotra, Dielectric relaxation of dioxane-water mixtures using time domain technique. J. Ind. Chem. Soc. 83(2), 168 (2006)

    Google Scholar 

  28. U. Kaatze, Microwave dielectric properties of liquids. Rad. Phys. Chem. 45(4), 549–566 (1995)

    Article  ADS  Google Scholar 

  29. D.N. Rander, Y.S. Joshi, K.S. Kanse, A.C. Kumbharkhane, Thermodynamic and dielectric relaxation study of erythritol–water binary mixture using time domain reflectometry. J. Mol. Liq. 199, 367–370 (2014)

    Article  Google Scholar 

  30. C. Gabriel, S. Gabriel, E.H. Grant, BSJ H astead, DMP M ingos. Chem. Soc. Rev. 27, 213 (1998)

    Article  Google Scholar 

  31. J.G. Kirkwood, The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911–919 (1939)

    Article  ADS  Google Scholar 

  32. A. Luzar, Dielectric behaviour of DMSO-water mixtures. A hydrogen-bonding model. J. Mol. Liq. 46, 221–238 (1990)

    Article  Google Scholar 

  33. A.C. Kumbharkhane, S.M. Puranik, S.C. Mehrotra, Structural study of amide-water mixtures using dielectric relaxation technique. J. Mol. Liq. 51, 261–277 (1992)

    Article  Google Scholar 

  34. A.G. Gilani, H.G. Gilani, M.J. Ansari, A thermodynamic study of solute–solvent interactions through dielectric properties of the mixtures consisting of 1, 4-butanediol, 1-octanol, and 1, 4-dioxane at different temperatures. J. Chem. Therm. 55, 203–212 (2012)

    Article  Google Scholar 

  35. D.A.G. Bruggeman, The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann. Phys. 416, 636–791 (1935)

    Article  Google Scholar 

  36. S.M. Puranik, A.C. Kumbharkhane, S.C. Mehrotra, The static permittivity of binary mixtures using an improved Bruggeman model. J. Mol. Liq. 59, 173–177 (1994)

    Article  Google Scholar 

  37. S. Glasstone, K.J. Laidler, H. Eyring, (No 54139) McGraw-Hill Book Company (1941)

Download references

Acknowledgements

We acknowledge the financial support given by the School of Physical Sciences at S. R. T. M. U. Nanded, Maharashtra and DST, New Delhi (Project Number DST PROJECT SB/S2/LOP-032/2013) for the use of the instrumental facility. Author DGD is thankful to Dr. Babasaheb Ambedkar Research and Training Institute (BARTI), Pune, Maharashtra, for financial assistance in the form of a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok C. Kumbharkhane.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongre, D.G., Garad, N.P. & Kumbharkhane, A.C. Dielectric Study of Nitriles Using Time-Domain Reflectometry. Braz J Phys 54, 62 (2024). https://doi.org/10.1007/s13538-024-01428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01428-8

Keywords

Navigation