Skip to main content
Log in

Controllable Surface Plasmon Polariton Propagation Length Using a Suitable Quantum Dot Material

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The hybrid surface plasmon polariton waveguide (HSPPWG) can carry and manipulate optical signals in nanoscale conduits. As a type of plasmonic waveguide, the HSPPWG helps designers to increase speed and develop high-density interlayer connections in order to improve network bandwidth and data transmission rates for future optical communication networks. The HSPPWG is a versatile photonics and integrated optics platform because of its unique characteristics. To achieve high efficiency, the quantum dot (QD) was used in the proposed structure and simulated it with the COMSOL Multiphysics software together with MATLAB. The main objective of the study is to increase the propagation length compared to conventional structure (without QD) while maintaining good quantitative confinement according to the figure of merit (FoM) test and confinement factor. We show that the confinement factor (Γ) at n2D of 17.8 × 1010 cm−2 and QDisk of 3 nm height provides superior confinement compared to QDisk heights 2 nm and 4 nm. The figure of merit at 1550 nm is approximately 105, outperforming the FoM value in the traditional case without quantum dots. The FoM at most wavelengths exceeds that of the traditional state. The propagation length (Lp) values at a QDisk height of 3 nm are 38 µm and 32 μm at 1550 nm and 1300 nm, respectively. The Lp of the SPP in the HSPPWG did not show a significant increase at wavelengths 1300 nm and 1550 nm. Therefore, we replaced the used InP semiconductors with other semiconductor materials such as AlGaAs. The Lp at the wavelength of 1550 nm reached 67.7 μm at a refractive index of 3.0238.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data cannot be shared publicly but is available upon request to other authors or editors.

References

  1. A.S. Baburin, A.M. Merzlikin, A.V. Baryshev, I.A. Ryzhikov, Y.V. Panfilov, I.A. Rodionov, Silver-based plasmonics: golden material platform and application challenges [Invited]. Opt. Mater. Express 9(2), 611 (2019). https://doi.org/10.1364/OME.9.000611

    Article  CAS  ADS  Google Scholar 

  2. J. Henzie, J. Lee, M.H. Lee, W. Hasan, T.W. Odom, Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60(1), 147–165 (2009). https://doi.org/10.1146/annurev.physchem.040808.090352

    Article  CAS  PubMed  ADS  Google Scholar 

  3. M.B.E.N. Rhouma, “Modeling and simulation of composite plasmonic structures based on graphene and metals”, (2021).

  4. S.K. Gray, Theory and modeling of plasmonic structures. J. Phys. Chem. C 117(5), 1983–1994 (2013). https://doi.org/10.1021/jp309664c

    Article  CAS  Google Scholar 

  5. Y. Li, “Surface plasmon polaritons at planar interfaces”, in Plasmonic Optics Theory and Applications. SPIE PRESS, pp. 41–66 (2017). https://doi.org/10.1117/3.2263757.ch2

  6. K. Shah, “5 Surface plasmon polaritons (SPP)”, in Plasma and Plasmonics, De Gruyter, pp. 55–70 (2018). https://doi.org/10.1515/9783110570038-065

  7. G. Barbillon, “Plasmonics and its applications”, Materials (Basel) vol. 12 (no. 9), (2019). https://doi.org/10.3390/ma12091502

  8. Y. Li, “Optical properties of plasmonic materials”, in Plasmonic Optics Theory and Applications. SPIE PRESS (2017). https://doi.org/10.1117/3.2263757.ch1

    Article  Google Scholar 

  9. I. Suárez et al., Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics. Nanophotonics 6(5), 1109–1120 (2017). https://doi.org/10.1515/nanoph-2016-0166

    Article  CAS  Google Scholar 

  10. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282

    Article  CAS  ADS  Google Scholar 

  11. P. Berini, Long-range surface plasmon polaritons vol. 1 (no. 3), (2009). https://doi.org/10.1364/aop.1.000484

  12. S. A. Maier, “Surface plasmon polaritons at metal / insulator interfaces,” Plasmon. Fundam. Appl., vol. 0, pp. 21–37, 2007, doi: https://doi.org/10.1007/0-387-37825-1_2.

  13. P. Dawson, B.A.F. Puygranier, J.P. Goudonnet, “Surface plasmon polariton propagation length: a direct comparison using photon scanning tunneling microscopy and attenuated total reflection”, Phys Rev B - Condens Matter Mater Phys vol. 63(no. 20) (2001). https://doi.org/10.1103/PhysRevB.63.205410

  14. J. Zhang, L. Zhang, W. Xu, Surface plasmon polaritons: physics and applications. J. Phys. D Appl. Phys. 45(11), 113001 (2012). https://doi.org/10.1088/0022-3727/45/11/113001

    Article  CAS  ADS  Google Scholar 

  15. M. Mohammadi, M. Soroosh, A. Farmani, S. Ajabi, “Engineered FWHM enhancement in plasmonic nanoresonators for multiplexer/demultiplexer in visible and NIR range”, Optik (Stuttg) vol. 274, p. 170583 (2023). https://doi.org/10.1016/j.ijleo.2023.170583

  16. F. Bagheri, M. Soroosh, Design and simulation of compact graphene-based plasmonic flip-flop using a resonant ring. Diam. Relat. Mater. 136, 109904 (2023). https://doi.org/10.1016/j.diamond.2023.109904

    Article  CAS  ADS  Google Scholar 

  17. M. Mohammadi, M. Soroosh, A. Farmani, S. Ajabi, High-performance plasmonic graphene-based multiplexer/demultiplexer. Diam. Relat. Mater. 139, 110365 (2023)

    Article  CAS  ADS  Google Scholar 

  18. Z. Salehnezhad, M. Soroosh, A. Farmani, Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene. Diam. Relat. Mater. 131, 109594 (2023). https://doi.org/10.1016/j.diamond.2022.109594

    Article  CAS  ADS  Google Scholar 

  19. S. Sun, H.-T. Chen, W.-J. Zheng, G.-Y. Guo, Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express 21(12), 14591 (2013). https://doi.org/10.1364/oe.21.014591

    Article  CAS  PubMed  ADS  Google Scholar 

  20. M.J. Maleki, M. Soroosh, A low-loss subwavelength plasmonic waveguide for surface plasmon polariton transmission in optical circuits. Opt. Quantum Electron. 55(14), 1266 (2023)

    Article  Google Scholar 

  21. M.J. Maleki, M. Soroosh, G. Akbarizadeh, A subwavelength graphene surface plasmon polariton-based decoder. Diam. Relat. Mater. 134, 109780 (2023)

    Article  CAS  ADS  Google Scholar 

  22. F. Bagheri, M. Soroosh, F. Haddadan, Y. Seifi-Kavian, Design and simulation of a compact graphene-based plasmonic D flip-flop. Opt. Laser Technol. 155, 108436 (2022). https://doi.org/10.1016/j.optlastec.2022.108436

    Article  CAS  Google Scholar 

  23. F. Haddadan, M. Soroosh, N. Alaei-Sheini, Cross-talk reduction in a graphene-based ultra-compact plasmonic encoder using an Au nano-ridge on a silicon substrate. Appl. Opt. 61(11), 3209–3217 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  24. C.Y. Chunwei Ye, Y.L. Yumin Liu, J.W. Jie Wang, H.L. Hongbo Lv, and Z.Y. Zhongyuan Yu, “Graded-index ridge surface plasmon polaritons waveguide”, Chinese Opt Lett, vol. 12(no. 9), pp. 092402–092405 (2014). https://doi.org/10.3788/col201412.092402

  25. I. Minin and O. Minin, Diffractive optics and nanophotonics: resolution below the diffraction limit, vol. 4,(2015)

  26. J.R. Krenn et al., Non-diffraction-limited light transport by gold nanowires. Europhys. Lett. 60(5), 663–669 (2002). https://doi.org/10.1209/epl/i2002-00360-9

    Article  CAS  ADS  Google Scholar 

  27. J.N. Jabir, S.M.M. Ameen, A. Habbeb Al-Khursan, “Giant net modal gain of plasmonic quantum dot nanolaser”, J Phys Conf Ser vol. 1294 (no. 2), p. 022031 (2019). https://doi.org/10.1088/1742-6596/1294/2/022031

  28. M. Castro-Lopez, A. Manjavacas, J. García de Abajo, N.F. van Hulst, Propagation and localization of quantum dot emission along a gap-plasmonic transmission line. Opt. Express 23(23), 29296 (2015). https://doi.org/10.1364/oe.23.029296

    Article  CAS  PubMed  ADS  Google Scholar 

  29. L. Seravalli, F. Sacconi, “Reviewing quantum dots for single-photon emission at 1.55 µm: a quantitative comparison of materials”, J Phys Mater vol. 3,(no. 4), (2020). https://doi.org/10.1088/2515-7639/abbd36

  30. J. Wang, Y.X. Guo, B.H. Huang, S.P. Gao, Y.S. Xia, A silicon-based hybrid plasmonic waveguide for nano-scale optical confinement and long range propagation. IEEE Trans. Nanotechnol. 18, 437–444 (2019). https://doi.org/10.1109/TNANO.2019.2911333

    Article  ADS  Google Scholar 

  31. X. Zhou, T. Zhang, L. Chen, W. Hong, X. Li, A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Light. Technol. 32(21), 4199–4203 (2014). https://doi.org/10.1109/JLT.2014.2350487

    Article  CAS  Google Scholar 

  32. T. Ma et al., Graphene-coated two-layer dielectric loaded surface plasmon polariton rib waveguide with ultra-long propagation length and ultra-high electro-optic wavelength tuning. IEEE Access 8, 103433–103442 (2020). https://doi.org/10.1109/ACCESS.2020.2999395

    Article  Google Scholar 

  33. N.T. Huong, N.D. Vy, M.T. Trinh, C.M. Hoang, “Tuning SPP propagation length of hybrid plasmonic waveguide by manipulating evanescent field”, Opt Commun vol. 462, p. 125335 (2020). https://doi.org/10.1016/j.optcom.2020.125335

  34. Z. Zhang, J. Wang, Long-range hybrid wedge plasmonic waveguide. Sci. Rep. 4(1), 6870 (2014). https://doi.org/10.1038/srep06870

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. P. Suvarnaphaet, S. Pechprasarn, “Enhancement of long-range surface plasmon excitation, dynamic range and figure of merit using a dielectric resonant cavity”, Sensors (Switzerland) vol. 18 (no. 9), (2018) https://doi.org/10.3390/s18092757

  36. Y. Li, “Surface plasmon polariton waveguides”, Plasmonic OptTheory Appl, pp. 135–160 (2017). https://doi.org/10.1117/3.2263757.ch5

  37. J. Xiao et al., A CMOS-compatible hybrid plasmonic slot waveguide with enhanced field confinement. IEEE Electron Device Lett. 37(4), 456–458 (2016). https://doi.org/10.1109/LED.2016.2531990

    Article  CAS  ADS  Google Scholar 

  38. S. Sederberg, C.J. Firby, S.R. Greig, A.Y. Elezzabi, Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices. Nanophotonics 6(1), 235–257 (2017). https://doi.org/10.1515/nanoph-2016-0135

    Article  Google Scholar 

  39. R. Buckley, P. Berini, Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt. Express 15(19), 12174 (2007). https://doi.org/10.1364/oe.15.012174

    Article  CAS  PubMed  ADS  Google Scholar 

  40. S. Aldawsari, “Comprehensive theoretical studies of guided modes in multilayer hybrid plasmonic waveguides by”, University of Waterloo (2018). [Online]. Available: http://hdl.handle.net/10012/13223

  41. W.F. Shneen, S. Mahdi, M. Ameen, “Long-range hybrid plasmonic waveguide of graded-index InGaAsP active layer based on InP”, https://doi.org/10.21203/rs.3.rs-1735858/v1

  42. S. Aldawsari, Aldawsari Sarah “Nonlinear hybrid plasmonic waveguides", University of Waterloo, (2013). [Online]. Available: http://hdl.handle.net/10012/7633

  43. L. Vinet, A. Zhedanov, A “missing” family of classical orthogonal polynomials, vol. 44(no. 8), John Wiley & Sons, Inc., (2011). https://doi.org/10.1088/1751-8113/44/8/085201

  44. J.N. Jabir, S.M.M. Ameen, A.H. Al-Khursan, Modeling of dielectric function in plasmonic quantum dot nanolaser. Opt. Quantum Electron. 51(12), 1–13 (2019). https://doi.org/10.1007/s11082-019-2117-0

    Article  CAS  Google Scholar 

  45. S. Kumar, S.I. Bozhevolnyi, Excitation of hybrid plasmonic waveguide modes by colloidal quantum dots. ACS Photonics 6(7), 1587–1593 (2019). https://doi.org/10.1021/acsphotonics.9b00379

    Article  CAS  Google Scholar 

  46. A.V. Krasavin, A.V. Zayats, Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv. Opt. Mater. 3(12), 1662–1690 (2015). https://doi.org/10.1002/adom.201500329

    Article  CAS  Google Scholar 

  47. X. Guo, Y. Ying, L. Tong, Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res. 47(2), 656–666 (2014). https://doi.org/10.1021/ar400232h

    Article  CAS  PubMed  Google Scholar 

  48. V.E. Babicheva, I.V. Kulkova, R. Malureanu, K. Yvind, A.V. Lavrinenko, Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide. Photonics Nanostructures - Fundam. Appl. 10(4), 389–399 (2012). https://doi.org/10.1016/j.photonics.2012.05.008

    Article  ADS  Google Scholar 

  49. P. Berini, I. De Leon, Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 6(1), 16–24 (2012). https://doi.org/10.1038/nphoton.2011.285

    Article  CAS  ADS  Google Scholar 

  50. N. Dordevic, “Colloidal quantum dot absorption and luminescence for optoelectronics : from machine learning to plasmonic-enhanced devices”, (2021). https://doi.org/10.3929/ethz-b-000503335

  51. T. Zhang, F. Shan, “Development and application of surface plasmon polaritons on optical amplification”, J Nanomater vol. 2014 (2014). https://doi.org/10.1155/2014/495381.

  52. K. Ahmed, Surface plasmon lasers: quantum dot. J. Comput. Sci. Technol. Stud. 4(2), 165–171 (2022). https://doi.org/10.32996/jcsts.2022.4.2.20

    Article  MathSciNet  Google Scholar 

  53. G.M. Almzargah, M.M. Tohari, “Tunable switching between slow and fast light in the graphene nanodisks (GND)–quantum dot (QD) plasmonic hybrid systems", Nanomaterials vol. 13(no. 5) (2023). https://doi.org/10.3390/nano13050834

  54. J. Kim, S.L. Chuang, Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J. Quantum Electron. 42(9), 942–952 (2006). https://doi.org/10.1109/JQE.2006.880380

    Article  CAS  ADS  Google Scholar 

  55. Y.Z. Huang, Comparison of modal gain and material gain for strong guiding slab waveguides. IEE Proc. Optoelectron. 148(3), 131–133 (2001). https://doi.org/10.1049/ip-opt:20010519

    Article  CAS  Google Scholar 

  56. Y.Z. Huang, Z. Pan, R.H. Wu, Analysis of the optical confinement factor in semiconductor lasers. J. Appl. Phys. 79(8), 3827–3830 (1996). https://doi.org/10.1063/1.361809

    Article  CAS  ADS  Google Scholar 

  57. H. Ju, “Kramers–Kronig relation for attenuated total reflection from a metal–dielectric interface where surface plasmon polaritons are excited”, Nanomaterials vol. 11(no. 11) (2021). https://doi.org/10.3390/nano11113063

  58. M. Mirahmadi, T. Mahinroosta, S.M. Hamidi, Manipulating plasmon-exciton interactions in the plasmonic waveguide structure based on the dispersion relations concept. Opt. Quantum Electron. 52(6), 1–9 (2020). https://doi.org/10.1007/s11082-020-02429-y

    Article  CAS  Google Scholar 

  59. N. Asgari, S.M. Hamidi, Exciton-plasmon coupling in two-dimensional plexitonic nano grating. Opt. Mater. (Amst) 81(May), 45–54 (2018). https://doi.org/10.1016/j.optmat.2018.05.011

    Article  CAS  ADS  Google Scholar 

  60. W.A. Harrison, Elementary theory of heterojunctions. J. Vac. Sci. Technol. 14(4), 1016–1021 (1977). https://doi.org/10.1116/1.569312

    Article  ADS  Google Scholar 

  61. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys”, J Appl Phys vol. 89(no. 11 I), pp. 5815–5875 (2001) https://doi.org/10.1063/1.1368156

  62. S. Editors, P.A.K. Von Klitzing, H.S.R. Wiesen, Science and technology, vol. 24(no. 7). Berlin, Heidelberg: Springer Berlin Heidelberg, (1997). https://doi.org/10.1007/978-3-662-05001-9

  63. S. Adachi, “GaAs, AlAs, and AlxGa1-xAs”, J Appl Phys vol. 58(no. 3) (1985). https://doi.org/10.1063/1.336070

  64. E. Ochoa-Martínez et al., Refractive indexes and extinction coefficients of n- and p-type doped GaInP, AlInP and AlGaInP for multijunction solar cells. Sol. Energy Mater. Sol. Cells 174, 388–396 (2018). https://doi.org/10.1016/j.solmat.2017.09.028

    Article  CAS  Google Scholar 

  65. D. Jung, L. Yu, S. Dev, D. Wasserman, M.L. Lee, Design and growth of multi-functional InAsP metamorphic buffers for mid-infrared quantum well lasers on InP. J. Appl. Phys. 125(8), 1–8 (2019). https://doi.org/10.1063/1.5054574

    Article  CAS  Google Scholar 

  66. B. Broberg, S. Lindgren, Refractive index of In1-xGaxAsyP 1-y layers and InP in the transparent wavelength region. J. Appl. Phys. 55(9), 3376–3381 (1984). https://doi.org/10.1063/1.333377

    Article  CAS  ADS  Google Scholar 

  67. M. Schubert, “Optical constants of Ga x In 1- x P lattice matched to GaAs”, pp. 4–9 (1995)

  68. A. Bernard et al., Mid-infrared optical characterization of InGaAsP. J. Opt. Soc. Am. B 35(12), C25 (2018). https://doi.org/10.1364/josab.35.000c25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contribution is equal.

Corresponding author

Correspondence to Watheq F. Shneen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shneen, W.F., Ameen, S.M.M. Controllable Surface Plasmon Polariton Propagation Length Using a Suitable Quantum Dot Material. Braz J Phys 54, 59 (2024). https://doi.org/10.1007/s13538-024-01425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01425-x

Keywords

Navigation