Skip to main content
Log in

Modeling of dielectric function in plasmonic quantum dot nanolaser

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work we present a model of the dielectric function in plasmonic quantum dot (QD) nanolaser. A metal/semiconductor/metal structure was considered to attain plasmonic nanocavity with active region containing: QD, wetting layer and barrier. The dielectric function was calculated for both metal (Ag) and QD structure. The propagation constant of surface plasmon polariton (SPP) at the interface of Ag/InAs-QD structure was calculated and the dispersion relation of the plasmonic QD structure was evaluated. For frequencies far from plasma one, the gap between real and imaginary parts was large and a deviation from linear relation was obvious. The SPP field was strongly localized at the interface due to the effect of zero-dimensional QD structure which has application in the super-resolution and best sensitivity in optical imaging. Results of propagation length of SPP (\(L_{spp}\)) also support this. According to the \(L_{spp}\) results, the damping in the SPP energy was low in the Ag/InAs-QD compared to that in the Ag/air interface. The obtained results are in the range of experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah, M., Noori, F.T.M., Al-Khursan, Amin H.: Terahertz emission in ladder plus Y-configurations in double quantum dot structure. Appl. Opt. 54, 5168–5192 (2015)

    Article  Google Scholar 

  • Al-Khursan, A.H.: Gain of excited states in the quantum-dots. Physica E 35, 6–8 (2006)

    Article  ADS  Google Scholar 

  • Al-Husseini, H., Al-Khursan, A.H., Al-Dabagh, S. Y.: III-Nitride QD Lasers. The Open Nanosci J 3(1), 1–11 (2009)

    Article  ADS  Google Scholar 

  • Baltar, H., Drozdowicz-Tomsia, K., Goldys, E.: Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films. In: Kim, K.Y. (ed.) Plasmonics-Principles and Applications. IntechOpen, Rijeka (2012). https://doi.org/10.5772/51218

    Chapter  Google Scholar 

  • Berini, P., Leon, I.D.: Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012)

    Article  ADS  Google Scholar 

  • Bimberg, D., Kirstaedter, N., Ledentsov, N.N., Alferov, ZhI, Kopev, P.S., Ustin, V.M.: In GaAs–GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997)

    Article  ADS  Google Scholar 

  • Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., Varadan, V.K.: Microwave Electronics Measurement and Materials Characterization. Wiley, Hoboken (2004)

    Book  Google Scholar 

  • Das, G., Coluccio, M.L., Alrasheed, S., Giugni, A., Allione, M., Torre, B., Perozziello, G., Candeloro, P., Fabrizio, E.Di: Plasmonic nanostructures for the ultrasensitive detection of biomolecules. Rivista Del Nuovo Cimento 39, 547–586 (2016)

    ADS  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A.: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72, 075405 (2005)

    Article  ADS  Google Scholar 

  • Dwara, S.N., Al-Khursan, A.H.: Quantum efficiency of InSbBi quantum dot photodetector. Appl. Opt. 54, 9722–9727 (2015)

    Article  ADS  Google Scholar 

  • Han, Y.J., Li, L.H., Zhu, J., Valavanis, A., Freeman, J.R., Chen, L., Rosamond, M., Dean, P., Davies, A.G., Linfield, E.H.: Silver-based surface plasmon waveguide for terahertz quantum cascade lasers. Opt. Express 26, 3814–3827 (2018)

    Article  ADS  Google Scholar 

  • He, X.Y., Wang, Q.J., Yu, S.F.: Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics 7, 571–577 (2012)

    Article  Google Scholar 

  • Holmström, P., Thylén, L., Bratkovsky, A.: Dielectric function of quantum dots in the strong confinement regime. J. Appl. Phys. 107, 064307 (2010)

    Article  ADS  Google Scholar 

  • Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  • Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)

    Book  Google Scholar 

  • Kim, J., Chuang, S.L.: Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J. Quantum Electron. 42, 942–952 (2006)

    Article  ADS  Google Scholar 

  • Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 44, 658–666 (2008)

    Article  ADS  Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  • Li, D.B., Ning, C.Z.: Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys. Rev. B 80, 153304 (2009)

    Article  ADS  Google Scholar 

  • Lüth, H.: Solid Surfaces, Interfaces and Thin Films. Springer, Berlin (2015)

    Book  Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, New York (2007)

    Book  Google Scholar 

  • Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Ni, C.A., Chang, S., Gargas, D.J., Moore, M.C., Yang, P., Chuang, S.L.: Metal-coated zinc oxide nanocavities. IEEE J. Quantum Electron. 47, 245–251 (2011)

    Article  ADS  Google Scholar 

  • Okamoto, K.: Surface plasmon enhanced solid-state light-emitting devices. In: Wang, Z.M., Neogi, A. (eds.) Lecture Notes in Nanoscale Science and Technology, Nanoscale Photonics and Optoelectronics, pp. 27–46. Springer, Berlin (2011). https://doi.org/10.1007/978-1-4419-7587-4_2

    Chapter  Google Scholar 

  • Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)

    Book  Google Scholar 

  • Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)

    Article  ADS  Google Scholar 

  • Sernelius, B.E.: Surface modes in physics. Wiley, Hoboken (2001)

    Book  Google Scholar 

  • Vargas, W.E.: Dielectric functions of Pd and Zr transition metals: an application of Drude-Lorentz models with simulated annealing optimization. Appl. Opt. 56, 1266–1275 (2017)

    Article  ADS  Google Scholar 

  • Wijesinghe, T., Premaratne, M.: Dispersion relation for surface plasmon polaritons on a Schottky junction. Opt. Express 20, 7151–7164 (2012)

    Article  ADS  Google Scholar 

  • Wu, B., Mathews, N., Sum, T.-C.: Plasmonic Organic Solar Cells: Charge Generation and Recombination. Springer, Singapore (2017)

    Book  Google Scholar 

  • Zeng, S., Baillargeat, D., Ho, H.-P., Yong, K.-T.: Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Habbeb Al-Khursan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabir, J.N., Ameen, S.M.M. & Al-Khursan, A.H. Modeling of dielectric function in plasmonic quantum dot nanolaser. Opt Quant Electron 51, 396 (2019). https://doi.org/10.1007/s11082-019-2117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2117-0

Keywords

Navigation