Skip to main content
Log in

Pushing the Limits of EPD Zeros Method

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The use of partition function zeros in the study of phase transitions is growing in the last decade mainly due to improved numerical methods as well as novel formulations and analysis. In this paper, the impact of different parameters choice for the energy probability distribution (EPD) zeros that were recently introduced by Costa et al. is explored in search for optimal values. Our results indicate that the EPD method is very robust against parameter variations and only small deviations on estimated critical temperatures are found even for large variation of parameters, allowing one to obtain accurate results with low computational cost. A proposal to circumvent potential convergence issues of the original algorithm is presented and validated for the case where it occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108 1175–1204 (1957). https://doi.org/10.1103/PhysRev.108.1175

  2. A. Aharoni, Introduction to the Theory of Ferromagnetism, International Series of Monographs on Physics, Clarendon Press, 2000

    Google Scholar 

  3. M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Revealing the superfluid lambda transition in the universal thermodynamics of a unitary fermi gas. Science 335(6068), 563–567 (2012). https://doi.org/10.1126/science.1214987

  4. H. Stanley, Introduction to Phase Transitions and Critical Phenomena, International Series of Monographs on physics, Oxford University Press, 1971

    Google Scholar 

  5. L.P. Kadanoff, More is the same; phase transitions and mean field theories. J. Stat. Phys. 137(5-6), 777 (2009). https://doi.org/10.1007/s10955-009-9814-1

  6. M.E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics. Rev. Mod. Phys. 70 653–681 (1998). https://doi.org/10.1103/RevModPhys.70.653

  7. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 4th Edition, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139696463

  8. V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems. WORLD SCIENTIFIC 1990. https://doi.org/10.1142/1011https://doi.org/10.1142/1011

  9. C.N. Yang, T.D. Lee, Statistical theory of equations of state and phase transitions. i. theory of condensation. Phys. Rev. 87 404–409 (1952). https://doi.org/10.1103/PhysRev.87.404

  10. M.E. Fisher, The nature of critical points, in: W. Brittin (Ed.), Lectures in Theoretical Physics, Vol. 7C, University of Colorado Press, Boulder, 1965, Ch. 1, pp. 1–159

  11. B. Costa, L. Mól, J. Rocha, Energy probability distribution zeros: A route to study phase transitions. Comput. Phys. Commun. 216 77–83 (2017). https://doi.org/10.1016/j.cpc.2017.03.003

  12. A.B. Lima, L.A.S. Mól, B.V. Costa, The Fully Frustrated XY Model Revisited: A New Universality Class. J. Stat. Phys. 175(5), 960–971 (2019). https://doi.org/10.1007/s10955-019-02271-x

  13. B.V. Costa, L.A. Mól, J.C. Rocha, A New Algorithm to Study the Critical Behavior of Topological Phase Transitions. Braz. J. Phys. 49(2), 271–276 (2019). https://doi.org/10.1007/s13538-019-00636-x

  14. J. Rocha, L. Mól, B. Costa, Using zeros of the canonical partition function map to detect signatures of a berezinskii-kosterlitz-thouless transition. Comput. Phys. Commun. 209 88–91 (2016). https://doi.org/10.1016/j.cpc.2016.08.016

  15. F.Y. Wu, The potts model. Rev. Mod. Phys. 54 235–268 (1982). https://doi.org/10.1103/RevModPhys.54.235

  16. U. Wolff, Collective monte carlo updating for spin systems, Phys. Rev. Lett. 62 361–364 (1989). https://doi.org/10.1103/PhysRevLett.62.361

  17. A.M. Ferrenberg, R.H. Swendsen, Optimized monte carlo data analysis. Phys. Rev. Lett. 63 1195–1198 (1989). https://doi.org/10.1103/PhysRevLett.63.1195

  18. R.G.M. Rodrigues, L.A.S. Mól, The impact of fluctuations on the zeros of the energy probability distribution. J. Phys. Conf. Ser. 1483 012007 (2020). https://doi.org/10.1088/1742-6596/1483/1/012007

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from CNPq grant \(402091/2012-4\) and FAPEMIG grant RED\(-00458-16\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. M. Rodrigues.

Ethics declarations

Conflicts of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, R.G.M., Costa, B.V. & Mól, L.A.S. Pushing the Limits of EPD Zeros Method. Braz J Phys 52, 14 (2022). https://doi.org/10.1007/s13538-021-01021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01021-3

Keywords

Navigation