Skip to main content
Log in

A QCD Sum Rules Calculation of the \(J/\psi D_{s}^{*} D_{s}^{*}\) Form Factors and Strong Coupling Constants

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We use the QCD sum rules for the three-point correlation functions to compute the strong coupling constants of the meson vertices \(J/\psi D_{s}^{*} D_{s}^{*}\). Using the QCD sum rules, we obtain the form factor of the vertex, the coupling constant, and the cut off parameter. Uncertainties are included. The results obtained for the coupling constants are \(g_{J/\psi D^{*}_{s} D^{*}_{s}} = 7.47^{+1.04}_{-0.71}.\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.E. Bracco, M. Chiapparini, F.S. Navarra, M. Nielsen, Prog. Part. Nucl. Phys. 67, 1019 (2012). arXiv:1104.2864 [hep-ph]

  2. T. Aaltonen, et al., (CDF collaboration). Phys. Rev. Lett. 102, 242002 (2009)

    Article  ADS  Google Scholar 

  3. C.P. Shen, et al., (The Belle collaboration). Phys. Rev. Lett. 104, 112004 (2010)

    Article  ADS  Google Scholar 

  4. R. Aaij, et al., (LHCb collaboration). Phys. Rev. D 85, 091103 (2012)

    Article  ADS  Google Scholar 

  5. V.M. Abazov, et al., (D0 collaboration). Phys. Rev. D89, 012004 (2014)

    ADS  Google Scholar 

  6. B.O. Rodrigues, Ph.D. thesis (2014)

  7. R. Aaij, et al., (LHCb). Phys. Rev. Lett. 118, 022003 (2017)

    Article  ADS  Google Scholar 

  8. R. Aaij, et al., (LHCb). Phys. Rev. D95, 012002 (2017)

    ADS  Google Scholar 

  9. M. Ablikim, et al., (BESIII). Phys. Rev. D 91, 032002 (2015). arXiv:1412.1867 [hep-ex]

  10. M. Ablikim, et al., (BESIII). Phys. Rev. D 97, 032008 (2018). arXiv:1712.09240 [hep-ex]

  11. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  12. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  13. A.M. Badalian, B.L.G. Bakker, Y.A. Simonov, Phys. Rev. D 75, 116001 (2007). arXiv:hep-ph/0702157 [HEP-PH]

  14. K. Nakamura, et al., J. Phys. G 37, 1422 (2010)

    Article  Google Scholar 

  15. C. McNeile, A. Bazavov, C.T.H. Davies, R.J. Dowdall, K. Hornbostel, G.P. Lepage, H.D. Trottier, . Phys. Rev. D. 87, 034503 (2013). arXiv:1211.6577 [hep-lat]

  16. S. Narison, Phys. Lett. B 706, 412 (2012). ISSN 0370-2693

    Article  ADS  Google Scholar 

  17. B. Ioffe, Prog. Part Nucl. Phys. 56, 232 (2006)

    Article  ADS  Google Scholar 

  18. B. Osório Rodrigues, M.E. Bracco, M. Chiapparini, Nucl. Phys. A 929, 143 (2014). arXiv:1309.1637 [hep-ph]

  19. B.O. Rodrigues, M.E. Bracco, M. Chiapparini, A. Cerqueira, J. Phys. Conf. Ser. 706, 052003 (2016)

    Article  Google Scholar 

  20. M. Bracco, M. Chiapparini, F. Navarra, M. Nielsen, Phys. Lett. B 605, 326 (2005). ISSN infoissn0370-2693

    Article  ADS  Google Scholar 

  21. Y. Oh, W. Liu, C.M. Ko, Phys. Rev. C 75, 064903 (2007). arXiv:nucl-th/0702077 [nucl-th]

Download references

Funding

This work has been supported by CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Osório Rodrigues.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Perturbative Terms of the OPE

Appendix: Perturbative Terms of the OPE

In this appendix, we present the full expressions for the perturbative term on the OPE side of the correlation function. The non-perturbative terms require several pages to be presented, so we will not present here; they can be found in Ref. [6].

1.1 A Off-shell J/ψ

The spectral density of the perturbative contribution is related to the double discontinuity as \(\rho ^{pert}_{\mu \nu }=\frac {1}{\pi }\bar {D}\bar {D}\left [ {\Pi }^{0} \right ] \). The double discontinuity for the perturbative term in (18) is given by:

$$ \begin{array}{@{}rcl@{}} \bar{D}\bar{D}\left [ {\Pi}^{0} \right ] &=& \frac{-3}{\sqrt{\lambda}} \left [ (4\bar{E} - 4\bar{H})p^{\prime}_{\nu} p^{\prime}_{\mu} p^{\prime}_{\lambda} + (2\bar{C} - 4\bar{L})p^{\prime}_{\nu} p^{\prime}_{\mu} p_{\lambda} + (2\bar{C} + 2\bar{E} - 2\bar{B} - 4\bar{L})p^{\prime}_{\nu} p_{\mu} p^{\prime}_{\lambda} \right.\\ &&+(4\bar{C} + 2\bar{E} - 2\bar{B} - 4\bar{L}) p_{\nu} p^{\prime}_{\mu} p^{\prime}_{\lambda} + (4\bar{C} + 2\bar{D} - 2\bar{A} - 4\bar{K})p_{\nu} p_{\mu} p^{\prime}_{\lambda} + (2\bar{C} - 4\bar{K}) p^{\prime}_{\nu} p_{\mu} p_{\lambda} \\ &&+(p^{\prime}\cdot p\bar{A} - 2p^{\prime} \cdot \bar{k}\bar{A} - {m_{c}^{2}}\bar{A} + \bar{k}^{2}\bar{A} + 2\bar{F} - 4\bar{I} + p^{\prime}\cdot \bar{k} + m_{s}m_{c} - \bar{k}^{2})g_{\mu\lambda}p_{\nu} \\ &&+(p^{\prime}\cdot p\bar{B} - 2p^{\prime}\cdot \bar{k}\bar{B} - {m_{c}^{2}}\bar{B} + \bar{k}^{2}\bar{B} - 4\bar{J} - m_{s}m_{c} -p\cdot \bar{k} + \bar{k}^{2})g_{\mu\lambda}p^{\prime}_{\nu} \\ &&+(-p^{\prime}\cdot p\bar{A} + {m_{c}^{2}}\bar{A} - 2m_{s}m_{c}\bar{A} + \bar{k}^{2}\bar{A} + 2\bar{F} - 4\bar{I} + p^{\prime}\cdot \bar{k} + m_{s}m_{c} - \bar{k}^{2})g_{\nu\lambda}p_{\mu} \\ &&+(-p^{\prime}\cdot p\bar{B} + {m_{c}^{2}}\bar{B} - 2m_{s}m_{c}\bar{B} + \bar{k}^{2}\bar{B} + 2\bar{F} - 4\bar{J} + m_{s}m_{c} + p\cdot \bar{k} - \bar{k}^{2})g_{\nu\lambda}p^{\prime}_{\mu} \\ &&+(p^{\prime}\cdot p\bar{B} - {m_{c}^{2}}\bar{B} - 2p\cdot \bar{k}\bar{B} + \bar{k}^{2}\bar{B} + 2\bar{F} - 4\bar{J} + m_{s}m_{c} + p\cdot \bar{k} - \bar{k}^{2})g_{\nu\mu}p^{\prime}_{\lambda} \\ & &+(p^{\prime}\cdot p\bar{A} - {m_{c}^{2}}\bar{A} - 2p\cdot \bar{k}\bar{A} + \bar{k}^{2}\bar{A} - 4\bar{I} - p^{\prime} \cdot \bar{k} - m_{s}m_{c} + \bar{k}^{2}) g_{\nu\mu}p_{\lambda} \\ &&\left . +(2\bar{C} + 2\bar{D} - 2\bar{A} - 4\bar{K})p_{\nu} p^{\prime}_{\mu} p_{\lambda} + (4\bar{D} - 4\bar{G})p_{\nu} p_{\mu} p_{\lambda} \right ] {\Theta} \left (1 - \overline{\cos^{2}\theta} \right ), \end{array} $$
(A.1)

where we have the following definitions:

$$ \begin{array}{@{}rcl@{}} A &=& \left [ \frac{\bar{k_{0}}}{\sqrt{s}} - \frac{p^{\prime}_{0}\overline{|\vec{k}|}\overline{\cos\theta}}{|\vec{p^{\prime}}|\sqrt{s}} \right ]; \end{array} $$
(A.2)
$$ \begin{array}{@{}rcl@{}} B &=& \frac{\overline{|\vec{k}|}\overline{\cos \theta}}{|\vec{p^{\prime}}|}. \end{array} $$
(A.3)
$$ \begin{array}{@{}rcl@{}} C &=& \frac{\overline{|\vec{k}|}}{p_{0}\overline{|\vec{p^{\prime}}|}} \left [ \bar{k_{0}}\overline{\cos\theta} - \frac{\overline{|\vec{k}|}p^{\prime}_{0}}{\overline{|\vec{p^{\prime}}|}} \left (\frac{3\overline{\cos\theta}^{2} - 1}{2} \right ) \right]; \end{array} $$
(A.4)
$$ \begin{array}{@{}rcl@{}} D &=& \frac{1}{{p_{0}^{2}}} \left [ \bar{k_{0}}^{2} + \frac{\overline{|\vec{k}|}^{2}p^{\prime2}_{0}}{|\vec{p^{\prime}}|^{2}} \left (\frac{3\overline{\cos\theta}^{2} - 1}{2} \right ) -\frac{2\overline{|\vec{k}|}p^{\prime}_{0}\bar{k_{0}}\overline{\cos\theta}}{|\vec{p^{\prime}}|}\right.\\ &&- \left. \frac{\overline{|\vec{k}|}^{2}}{2}(\overline{\cos\theta}^{2} - 1) \right ]; \end{array} $$
(A.5)
$$ \begin{array}{@{}rcl@{}} E &=& \frac{\overline{|\vec{k}|}^{2}}{\overline{|\vec{p^{\prime}}|}^{2}}\left (\frac{3\overline{\cos\theta}^{2} - 1}{2} \right ); \end{array} $$
(A.6)
$$ \begin{array}{@{}rcl@{}} F &=& \frac{\overline{|\vec{k}|}^{2}(\overline{\cos\theta}^{2}- 1)}{2}. \end{array} $$
(A.7)
$$ \begin{array}{@{}rcl@{}} G &=& \frac{1}{{p^{3}_{0}}}\left (\bar{k_{0}}^{3} {\kern1.7pt}-{\kern1.7pt} H p^{\prime3}_{0} - 3Ip_{0} {\kern1.7pt}-{\kern1.7pt} 3Jp^{\prime}_{0} {\kern1.7pt}-{\kern1.7pt} 3K{p_{0}^{2}}p^{\prime}_{0} - 3Lp^{\prime2}_{0}p_{0} \right ); \end{array} $$
(A.8)
$$ \begin{array}{@{}rcl@{}} H &=& \frac{\overline{|\vec{k}|}^{3}}{|\vec{p^{\prime}}|^{3}}\left (\frac{5\overline{\cos\theta}^{3} - 3 \overline{\cos\theta}}{2}\right ); \end{array} $$
(A.9)
$$ \begin{array}{@{}rcl@{}} I &=& \frac{\overline{|\vec{k}|}^{2}(1-\overline{\cos\theta}^{2})}{2p_{0}}\left( \frac{p^{\prime}_{0}\overline{|\vec{k}|}\overline{\cos\theta}}{|\vec{p^{\prime}}|} - \bar{k_{0}} \right); \end{array} $$
(A.10)
$$ \begin{array}{@{}rcl@{}} J &=& -\frac{\overline{|\vec{k}|}^{3}\overline{\cos\theta}(1-\overline{\cos\theta}^{2})}{2|\vec{p^{\prime}}|}; \end{array} $$
(A.11)
$$ \begin{array}{@{}rcl@{}} K &=& \frac{1}{{p^{2}_{0}}}\left (\frac{\bar{k_{0}}^{2}\overline{|\vec{k}|}\overline{\cos\theta}}{|\vec{p^{\prime}}|} - p^{\prime2}_{0}H - J - 2Lp^{\prime}_{0}p_{0} \right ); \end{array} $$
(A.12)
$$ \begin{array}{@{}rcl@{}} L &=& \frac{\overline{|\vec{k}|}^{2}}{2p_{0}|\vec{p^{\prime}}|^{2}} \left [ 3\bar{k_{0}}\overline{\cos\theta}^{2} - \bar{k_{0}} - \frac{\overline{|\vec{k}|}p^{\prime}_{0}}{|\vec{p^{\prime}}|} \left (5\overline{\cos\theta}^{3} - 3 \overline{\cos\theta} \right ) \right ]. \end{array} $$
(A.13)
$$ \overline{|\vec{k}|^{2}} = {k_{0}^{2}} - {m_{s}^{2}}. $$
(A.14)
$$ \cos \theta = \frac{2p^{\prime}_{0}k_{0} + {m^{2}_{c}} - {m^{2}_{s}} - u}{2|\vec{p^{\prime}}||\vec{k}|}. $$
(A.15)
$$ k_{0} = \frac{s + {m_{s}^{2}} - {m_{c}^{2}}}{2\sqrt{s}}. $$
(A.16)

1.2 B Off-Shell \(D_{s}^{*}\)

$$ \begin{array}{@{}rcl@{}} DD[{\Pi}^{0}] &=& \frac{-3}{\sqrt{\lambda}} \left [ (4\bar{E} - 4\bar{H})p^{\prime}_{\mu} p^{\prime}_{\nu} p^{\prime}_{\lambda} + (2\bar{C} - 4\bar{L})p^{\prime}_{\mu} p^{\prime}_{\nu} p_{\lambda} + (2\bar{C} + 2\bar{E} - 2\bar{B} - 4\bar{L}) \right.\\ &&\times p^{\prime}_{\mu} p_{\nu} p^{\prime}_{\lambda} + (4\bar{C} + 2\bar{E} - 2\bar{B} - 4\bar{L}) p_{\mu} p^{\prime}_{\nu} p^{\prime}_{\lambda} + (2\bar{C} - 4\bar{K}) p^{\prime}_{\mu} p_{\nu} p_{\lambda} + (4\bar{D} - 4\bar{G})p_{\mu} p_{\nu} p_{\lambda}\\ &&+(4\bar{C} + 2\bar{D} - 2\bar{A} - 4\bar{K})p_{\mu} p_{\nu} p^{\prime}_{\lambda} + (2\bar{C} + 2\bar{D} - 2\bar{A} - 4\bar{K})p_{\mu} p^{\prime}_{\nu} p_{\lambda} + (-p^{\prime}\cdot p\bar{B} + 2\bar{F}\\ &&- 4\bar{J} + p\cdot \bar{k} )g_{\mu\lambda}p^{\prime}_{\nu} + (p^{\prime}\cdot p\bar{A} - 2p^{\prime}\cdot \bar{k}\bar{A} - 2m_{c}m_{s}\bar{A} + 2 {m_{c}^{2}}\bar{A} + 2\bar{F} - 4\bar{I} + p^{\prime}\cdot \bar{k} \\ &&+m_{c}m_{s} - {m_{c}^{2}})g_{\nu\lambda}p_{\mu} + (p^{\prime}\cdot p\bar{B} - 2p^{\prime}\cdot \bar{k}\bar{B} - 2m_{c}m_{s}\bar{B} + 2{m_{c}^{2}}\bar{B} - 4\bar{J} -p\cdot \bar{k} )g_{\nu\lambda}p^{\prime}_{\mu} \\ &&+(-p^{\prime}\cdot p\bar{A} + 2\bar{F} - 4\bar{I} + p^{\prime}\cdot \bar{k} + m_{c}m_{s} - {m_{c}^{2}})g_{\mu\lambda}p_{\nu} \\ &&+(p^{\prime} \cdotp\bar{A} - 2p\cdot \bar{k}\bar{A} - 4\bar{I} - p^{\prime} \cdot\bar{k} - m_{c}m_{s} + {m_{c}^{2}}) g_{\mu\nu}p_{\lambda} \\ &&\left. +(p^{\prime}\cdot p\bar{B} - 2p \cdot \bar{k}\bar{B} + 2\bar{F} - 4\bar{J} + p \cdot \bar{k})g_{\mu\nu}y_{\lambda} \right ] {\Theta} \left (1 - \overline{\cos^{2}\theta} \right ), \end{array} $$
(A.17)

where:

$$ \begin{array}{@{}rcl@{}} p^{\prime}\cdot p &=& \frac{s+u-t}{2};\\ p\cdot \bar{k} &=& \frac{s}{2};\\ p^{\prime} \cdot \bar{k} &=& \frac{u + {m_{c}^{2}} - {m_{s}^{2}}}{2}. \end{array} $$

The quantities \(\bar {A}-\bar {L}\), \(\bar {k}^{2}\), \(\bar {k}_{0}\), \(\overline {|\vec {k}|}^{2}\) and \(\overline {\cos \limits \theta }\) are the same ones defined for the off-shell J/ψ case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, B.O., Bracco, M.E. & Zanetti, C.M. A QCD Sum Rules Calculation of the \(J/\psi D_{s}^{*} D_{s}^{*}\) Form Factors and Strong Coupling Constants. Braz J Phys 50, 363–371 (2020). https://doi.org/10.1007/s13538-020-00744-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00744-z

Keywords

Navigation