Skip to main content
Log in

Particle Acceleration by Shocks in Supernova Remnants

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Particle acceleration occurs on a range of scales from AU in the heliosphere to Mpc in clusters of galaxies and to energies ranging from MeV to exaelectronvolt (EeV). A number of acceleration processes have been proposed, but diffusive shock acceleration (DSA) is widely invoked as the predominant mechanism. DSA operates on all these scales and probably to the highest energies. DSA is simple, robust and predicts a universal spectrum. However, there are still many unknowns regarding particle acceleration. This paper focuses on the particular question of whether supernova remnants (SNR) can produce the Galactic cosmic ray (CR) spectrum up to the knee at a few petaelectronvolt (PeV). The answer depends in large part on the detailed physics of diffusive shock acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O. Adriani, et al., Sci.332, 69 (2011)

    Article  ADS  Google Scholar 

  2. F. Aharonian, Astropart. Phys.43, 71 (2013)

    Article  ADS  Google Scholar 

  3. F. Aharonian, et al., A&A. 464, 235 (2007)

    Article  ADS  Google Scholar 

  4. F. Aharonian, et al., A&A. 531, C1 (2011)

    Article  ADS  Google Scholar 

  5. H.S. Ahn, et al., ApJLett.714, L89 (2010)

    Article  ADS  Google Scholar 

  6. W.I. Axford, E. Leer, G. Skadron, Proc. 15th ICRC (Plovdiv.)11, 132 (1977)

    Google Scholar 

  7. A.R. Bell, MNRAS. 182, 147 (1978)

    Article  ADS  Google Scholar 

  8. A.R. Bell, MNRAS. 353, 550 (2004)

    Article  ADS  Google Scholar 

  9. A.R. Bell, MNRAS. 358, 181 (2005)

    Article  ADS  Google Scholar 

  10. A.R. Bell, Astropart. Phys.43, 56 (2013)

    Article  ADS  Google Scholar 

  11. A.R. Bell, S.G. Lucek, MNRAS. 321, 433 (2001)

    Article  ADS  Google Scholar 

  12. A.R. Bell, K.M. Schure, B. Reville, G. Giacinti, MNRAS. 431, 415 (2013)

    Article  ADS  Google Scholar 

  13. E.G. Berezhko, L.T. Ksenofontov, H.J. Völk, A&A. 412, L11 (2003)

    Article  ADS  Google Scholar 

  14. R.D. Blandford, D. Eichler, Phys. Rep.154, 1 (1987)

    Article  ADS  Google Scholar 

  15. R.D. Blandford, J.P Ostriker, ApJ.221, L29 (1978)

    Article  ADS  Google Scholar 

  16. P. Blasi, E. Amato, JCAP01. 2012, 011 (2012)

    Article  ADS  Google Scholar 

  17. P. Blasi, E. Amato, P.D. Serpico, Phys. Rev. Lett.109, 061101 (2012)

    Article  ADS  Google Scholar 

  18. K.J. Borkowski, S.P. Reynolds, U. Hwang, D.A. Green, R. Petre, K. Krishnamurthy, R. Willett, ApJL.771, 9 (2013)

    Article  ADS  Google Scholar 

  19. A.M Bykov, S.M Osipov, D.C Ellison, MNRAS. 410, 39 (2011)

    Article  ADS  Google Scholar 

  20. D. Caprioli, P. Blasi, E. Amato, Astropart. Phys.33, 160 (2010)

    Article  ADS  Google Scholar 

  21. L.O’C. Drury, Rep. Prog. Phys.46, 973 (1983)

    Article  ADS  Google Scholar 

  22. L.O’C. Drury, MNRAS. 415, 1807 (2011)

    Article  ADS  Google Scholar 

  23. L.O’C. Drury, S.A.E.G. Falle, MNRAS. 222, 353 (1986)

    Article  ADS  Google Scholar 

  24. D.C. Ellison, M.G. Baring, F.C. Jones, ApJ.453, 873 (1995)

    Article  ADS  Google Scholar 

  25. E. Fermi, Phys. Rev.75, 1169 (1949)

    Article  ADS  MATH  Google Scholar 

  26. J. Giacalone, J.R. Jokipii, ApJL.663, L41 (2007)

    Article  ADS  Google Scholar 

  27. F. Guo, S. Li, H. Li, J. Giacalone, JR Jokipii, D. Li, ApJ.747, 98 (2012)

    Article  ADS  Google Scholar 

  28. A.M. Hillas, ARA&A. 22, 425 (1984)

    Article  ADS  Google Scholar 

  29. J.A. Hinton, W. Hofmann, ARA&A. 47, 523 (2009)

    Article  ADS  Google Scholar 

  30. J.R. Jokipii, ApJ.313, 842 (1987)

    Article  ADS  Google Scholar 

  31. F.C. Jones, D.C. Ellison, Space Sci. Rev.58, 259 (1991)

    Article  ADS  Google Scholar 

  32. K.-H. Kampert, Nucl. Phys. B Proc. Supp.165, 294 (2007)

    Article  ADS  Google Scholar 

  33. G.F. Krymsky, Sov. Phys. Dokl.22, 327 (1977)

    ADS  Google Scholar 

  34. G.F. Krymsky, et al., Proc. 16th ICRC (Kyoto). 2, 39 (1979)

    Google Scholar 

  35. R. Kulsrud, W.P. Pearce, ApJ.156, 445 (1969)

    Article  ADS  Google Scholar 

  36. O. Lagage, C.J. Cesarsky, A&A. 118, 223 (1983a)

    ADS  MATH  Google Scholar 

  37. O. Lagage, C.J. Cesarsky, ApJ.125, 249 (1983b)

    ADS  MATH  Google Scholar 

  38. J. Larsson, et al., Nat.474, 484 (2011)

    Article  ADS  Google Scholar 

  39. I. Lerche, ApJ.147, 689 (1967)

    Article  ADS  Google Scholar 

  40. S.G. Lucek, A.R. Bell, MNRAS. 314, 65 (2000)

    Article  ADS  Google Scholar 

  41. M.A. Malkov, L.O’C. Drury, Rep. Prog. Phys.64, 429 (2001)

    Article  ADS  Google Scholar 

  42. S. Mattila, et al., ApJ.717, 1140 (2010)

    Article  ADS  Google Scholar 

  43. A. Meli, P.L Biermann, A&A. 454, 687 (2006)

    Article  ADS  Google Scholar 

  44. Y. Ohira, K. Mirase, R. Yamazaki, A&A. 513, A17 (2010)

    Article  ADS  Google Scholar 

  45. V.S. Ptuskin, V.N. Zirakashvili, E.-S. Seo, ApJ.718, 32 (2010)

    Article  Google Scholar 

  46. J.C. Raymond, et al.ApJ.659, 1257 (2007)

    Article  ADS  Google Scholar 

  47. B. Reville, A.R. Bell, MNRAS. 419, 2433 (2012)

    Article  ADS  Google Scholar 

  48. B. Reville, A.R. Bell, MNRAS. 430, 2873 (2013)

    Article  ADS  Google Scholar 

  49. B. Reville, S. O’Sullivan, P. Duffy, J.G. Kirk, MNRAS. 386, 509 (2008)

    Article  ADS  Google Scholar 

  50. S.P. Reynolds, K.J. Borkowski, D.A. Green, U. Hwang, I. Harrus, R. Petre, ApJL. 680, L41 (2008)

    Article  ADS  Google Scholar 

  51. M. Riquelme, A. Spitkovsky, ApJ.694, 626 (2009)

    Article  ADS  Google Scholar 

  52. M. Riquelme, A. Spitkovsky, ApJ.717, 1054 (2010)

    Article  ADS  Google Scholar 

  53. K.M. Schure, A.R. Bell, MNRAS. 418, 782 (2011)

    Article  ADS  Google Scholar 

  54. K.M. Schure, A.R. Bell, MNRAS. 435, 1174 (2013a)

    Article  ADS  Google Scholar 

  55. K.M. Schure, A.R. Bell, MNRAS 437, 2802 (2014)

  56. Skilling, MNRAS. 172, 55 (1975a)

    Article  ADS  Google Scholar 

  57. Skilling, MNRAS. 173, 245 (1975b)

    Article  ADS  Google Scholar 

  58. Skilling, MNRAS. 173, 255 (1975c)

    Article  ADS  Google Scholar 

  59. M.D. Stage, G.E. Allen, J.C. Houck, J.E. Davis, Nat. Phys.2, 614 (2006)

    Article  Google Scholar 

  60. S. Ting, The AMS spectrometer on the International Space Station, Highlight Talk, ICRC 2013 (2013)

  61. N. Tomassetti, ApJL.752, L13 (2012)

    Article  ADS  Google Scholar 

  62. Y. Uchiyama et al., Nat.449, 576 (2007)

    Article  ADS  Google Scholar 

  63. J. Vink, ApJ.689, 231 (2008)

    Article  ADS  Google Scholar 

  64. J. Vink, J.M. Laming, ApJ.584, 758 (2003)

    Article  ADS  Google Scholar 

  65. H.J. Völk, E.G. Berezhko, L.T. Ksenofontov, A&A. 433, 229 (2005)

    Article  ADS  Google Scholar 

  66. H.J. Völk, P. Biermann, ApJL.333, L65 (1988)

    Article  ADS  Google Scholar 

  67. B.J. Williams et al., ApJ.770, 129 (2013)

    Article  ADS  Google Scholar 

  68. D.G. Wentzel, ARA&A. 12, 71 (1974)

    Article  ADS  Google Scholar 

  69. V.N. Zirakashvili, V.S. Ptuskin, ApJ.678, 939 (2008)

    Article  ADS  Google Scholar 

  70. V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, ApJ.678, 255 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I thank Brian Reville, Klara Schure and Gwenael Giacinti for many insightful discussions on cosmic ray and related physics. The research leading to this review has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 247039 and from grant number ST/H001948/1 made by the UK Science Technology and Facilities Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Raymond Bell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, A. Particle Acceleration by Shocks in Supernova Remnants. Braz J Phys 44, 415–425 (2014). https://doi.org/10.1007/s13538-014-0219-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0219-5

Keywords

Navigation