Skip to main content
Log in

Deep thrombosis characterization using photoacoustic imaging with intravascular light delivery

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Venous thromboembolism (VTE) is a condition in which blood clots form within the deep veins of the leg or pelvis to cause deep vein thrombosis. The optimal treatment of VTE is determined by thrombus properties such as the age, size, and chemical composition of the blood clots. The thrombus properties can be readily evaluated by using photoacoustic computed tomography (PACT), a hybrid imaging modality that combines the rich contrast of optical imaging and deep penetration of ultrasound imaging. With inherent sensitivity to endogenous chromophores such as hemoglobin, multispectral PACT can provide composition information and oxygenation level in the clots. However, conventional PACT of clots relies on external light illumination, which provides limited penetration depth due to strong optical scattering of intervening tissue. In our study, this depth limitation is overcome by using intravascular light delivery with a thin optical fiber. To demonstrate in vitro blood clot characterization, clots with different acuteness and oxygenation levels were placed underneath ten-centimeter-thick chicken breast tissue and imaged using multiple wavelengths. Acoustic frequency analysis was performed on the received PA channel signals, and oxygenation level was estimated using multispectral linear spectral unmixing. The results show that, with intravascular light delivery, clot oxygenation level can be accurately measured, and the clot age can thus be estimated. In addition, we found that retracted and unretracted clots had different acoustic frequency spectrum. While unretracted clots had stronger high frequency components, retracted clots had much higher low frequency components due to densely packed red blood cells. The PACT characterization of the clots was consistent with the histology results and mechanical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938–49. https://doi.org/10.1056/NEJMra0801082.

    Article  Google Scholar 

  2. Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous thromboembolism: a public health concern. Am J Prev Med. 2010;38(4, Supplement):S495–501. https://doi.org/10.1016/j.amepre.2009.12.017.

    Article  Google Scholar 

  3. Bulger CM, Jacobs C, Patel NH. Epidemiology of acute deep vein thrombosis. Tech Vasc Interv Radiol. 2004;7(2):50–4. https://doi.org/10.1053/j.tvir.2004.02.001.

    Article  Google Scholar 

  4. Berndt M, et al. Thrombus histology of basilar artery occlusions: are there differences to the anterior circulation? Clin Neuroradiol. 2021;31(3):753–61. https://doi.org/10.1007/s00062-020-00964-5.

    Article  Google Scholar 

  5. Moftakhar P, et al. Density of thrombus on admission CT predicts revascularization efficacy in large vessel occlusion acute ischemic stroke. Stroke. 2013;44(1):243–5. https://doi.org/10.1161/STROKEAHA.112.674127.

    Article  Google Scholar 

  6. Maekawa K, et al. Erythrocyte-rich thrombus is associated with reduced number of maneuvers and procedure time in patients with acute ischemic stroke undergoing mechanical thrombectomy. Cerebrovasc Dis Extra. 2018;8(1):39–49. https://doi.org/10.1159/000486042.

    Article  Google Scholar 

  7. Gunning GM, McArdle K, Mirza M, Duffy S, Gilvarry M, Brouwer PA. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J Neurointerv Surg. 2018;10(1):34–8. https://doi.org/10.1136/neurintsurg-2016-012721.

    Article  Google Scholar 

  8. Goel L, Jiang X. Advances in sonothrombolysis techniques using piezoelectric transducers. Sensors. 2020;20(5):5. https://doi.org/10.3390/s20051288.

    Article  Google Scholar 

  9. Goel L, et al. Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsyst Nanoeng. 2021;7(1):1–7. https://doi.org/10.1038/s41378-020-00228-9.

    Article  Google Scholar 

  10. Ridker PM, et al. Long-term, low-intensity Warfarin therapy for the prevention of recurrent venous thromboembolism. N Engl J Med. 2003;348(15):1425–34. https://doi.org/10.1056/NEJMoa035029.

    Article  Google Scholar 

  11. Prandoni P, et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1626 patients. Haematologica. 2007;92(2):199–205. https://doi.org/10.3324/haematol.10516.

    Article  Google Scholar 

  12. Rodger MA, et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ. 2008;179(5):417–26. https://doi.org/10.1503/cmaj.080493.

    Article  Google Scholar 

  13. Agnelli G, et al. Extended oral anticoagulant therapy after a first episode of pulmonary embolism. Ann Intern Med. 2003;139(1):19. https://doi.org/10.7326/0003-4819-139-1-200307010-00008.

    Article  Google Scholar 

  14. Heijboer H, Jongbloets LM, Büller HR, Lensing AW, ten Cate JW. Clinical utility of real-time compression ultrasonography for diagnostic management of patients with recurrent venous thrombosis. Acta Radiol. 1992;33(4):297–300.

    Article  Google Scholar 

  15. Baarslag H-J, van Beek EJR, Koopman MMW, Reekers JA. Prospective study of color duplex ultrasonography compared with contrast venography in patients suspected of having deep venous thrombosis of the upper extremities. Ann Intern Med. 2002;136(12):865–72. https://doi.org/10.7326/0003-4819-136-12-200206180-00007.

    Article  Google Scholar 

  16. Gaitini D. Current approaches and controversial issues in the diagnosis of deep vein thrombosis via duplex Doppler ultrasound. J Clin Ultrasound. 2006;34(6):289–97. https://doi.org/10.1002/jcu.20236.

    Article  Google Scholar 

  17. Mfoumou E, Tripette J, Blostein M, Cloutier G. Time-dependent hardening of blood clots quantitatively measured in vivo with shear-wave ultrasound imaging in a rabbit model of venous thrombosis. Thromb Res. 2014;133(2):265–71. https://doi.org/10.1016/j.thromres.2013.11.001.

    Article  Google Scholar 

  18. Liu X, Li N, Wen C. Effect of pathological heterogeneity on shear wave elasticity imaging in the staging of deep venous thrombosis. PLoS ONE. 2017;12(6):e0179103. https://doi.org/10.1371/journal.pone.0179103.

    Article  Google Scholar 

  19. Haworth KJ, Weidner CR, Abruzzo TA, Shearn JT, Holland CK. Mechanical properties and fibrin characteristics of endovascular coil-clot complexes: relevance to endovascular cerebral aneurysm repair paradigms. J Neurointerv Surg. 2015;7(4):291–6. https://doi.org/10.1136/neurintsurg-2013-011076.

    Article  Google Scholar 

  20. Huang C-C, Chen P-Y, Shih C-C. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Med Phys. 2013;40(4):042901. https://doi.org/10.1118/1.4794493.

    Article  Google Scholar 

  21. Aglyamov SR, et al. Young’s modulus reconstruction for elasticity imaging of deep venous thrombosis: animal studies. In: Medical imaging 2004: ultrasonic imaging and signal processing, vol 5373; 2004. p. 193–201. https://doi.org/10.1117/12.539454.

  22. Palmeri ML, Nightingale KR. What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic? Imaging Med. 2011;3(4):433–44. https://doi.org/10.2217/iim.11.41.

    Article  Google Scholar 

  23. Yan Y, et al. Photoacoustic-guided endovenous laser ablation: characterization and in vivo canine study. Photoacoustics. 2021;24:100298. https://doi.org/10.1016/j.pacs.2021.100298.

    Article  Google Scholar 

  24. Tummers WS, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann Surg Oncol. 2018;25(7):1880–8. https://doi.org/10.1245/s10434-018-6453-2.

    Article  Google Scholar 

  25. Ermilov SA, et al. Laser optoacoustic imaging system for detection of breast cancer. JBO. 2009;14(2):024007. https://doi.org/10.1117/1.3086616.

    Article  Google Scholar 

  26. Toi M, et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array. Sci Rep. 2017;7(1):41970. https://doi.org/10.1038/srep41970.

    Article  Google Scholar 

  27. Neuschler EI, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists. Radiology. 2018;287(2):398–412. https://doi.org/10.1148/radiol.2017172228.

    Article  Google Scholar 

  28. Kothapalli S-R, Ma T-J, Vaithilingam S, Oralkan Ö, Khuri-Yakub BT, Gambhir SS. Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array. IEEE Trans Biomed Eng. 2012;59(5):1199–204. https://doi.org/10.1109/TBME.2012.2183593.

    Article  Google Scholar 

  29. Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. Photoacoustics. 2019;14:77–98. https://doi.org/10.1016/j.pacs.2019.05.001.

    Article  Google Scholar 

  30. Park B, et al. A photoacoustic finder fully integrated with a solid-state dye laser and transparent ultrasound transducer. Photoacoustics. 2021;23:100290. https://doi.org/10.1016/j.pacs.2021.100290.

    Article  Google Scholar 

  31. Lee C, Choi W, Kim J, Kim C. Three-dimensional clinical handheld photoacoustic/ultrasound scanner. Photoacoustics. 2020;18:100173. https://doi.org/10.1016/j.pacs.2020.100173.

    Article  Google Scholar 

  32. Xu M, Wang LV. Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E. 2005;71(1):016706. https://doi.org/10.1103/PhysRevE.71.016706.

    Article  Google Scholar 

  33. Wang LV. Tutorial on photoacoustic microscopy and computed tomography. IEEE J Sel Top Quantum Electron. 2008;14(1):171–9. https://doi.org/10.1109/JSTQE.2007.913398.

    Article  Google Scholar 

  34. Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. Electromagn Waves (Camb). 2014;147:1–22.

    Article  Google Scholar 

  35. Das D, Pramanik M. Combined ultrasound and photoacoustic imaging of blood clot during microbubble-assisted sonothrombolysis. J Biomed Opt. 2019;24(12):121902. https://doi.org/10.1117/1.JBO.24.12.121902.

    Article  Google Scholar 

  36. Das D, Sivasubramanian K, Rajendran P, Pramanik M. Label-free high frame rate imaging of circulating blood clots using a dual modal ultrasound and photoacoustic system. J Biophotonics. 2021;14(3):e202000371. https://doi.org/10.1002/jbio.202000371.

    Article  Google Scholar 

  37. Kutty S, et al. Sonothrombolysis of intra-catheter aged venous thrombi using microbubble enhancement and guided three-dimensional ultrasound pulses. J Am Soc Echocardiogr. 2010;23(9):1001–6. https://doi.org/10.1016/j.echo.2010.06.024.

    Article  Google Scholar 

  38. Li M, Lan B, Liu W, Xia J, Yao J. Internal-illumination photoacoustic computed tomography. JBO. 2018;23(3):030506. https://doi.org/10.1117/1.JBO.23.3.030506.

    Article  Google Scholar 

  39. Kim J, et al. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Sci Rep. 2017;7(1):3454. https://doi.org/10.1038/s41598-017-03492-4.

    Article  Google Scholar 

  40. Bjørnerud A, Briley-Sæbø K, Johansson LO, Kellar KE. Effect of NC100150 injection on the 1H NMR linewidth of human whole blood ex vivo: dependency on blood oxygen tension. Magn Reson Med. 2000;44(5):803–7. https://doi.org/10.1002/1522-2594(200011)44:5%3c803::AID-MRM19%3e3.0.CO;2-K.

    Article  Google Scholar 

  41. Seaton B, Lloyd BB. The effects of pH on the equilibrium constants of various models for the haemoglobin-oxygen equilibrium in vitro. Respir Physiol. 1974;20(2):209–30. https://doi.org/10.1016/0034-5687(74)90108-X.

    Article  Google Scholar 

  42. Sutton JT, Ivancevich NM, Perrin SR, Vela DC, Holland CK. Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound Med Biol. 2013;39(5):813–24. https://doi.org/10.1016/j.ultrasmedbio.2012.12.008.

    Article  Google Scholar 

  43. Jeon S, Park E-Y, Choi W, Managuli R, Jong Lee K, Kim C. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. Photoacoustics. 2019;15:100136. https://doi.org/10.1016/j.pacs.2019.100136.

    Article  Google Scholar 

  44. Matrone G, Savoia AS, Caliano G, Magenes G. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans Med Imaging. 2015;34(4):940–9. https://doi.org/10.1109/TMI.2014.2371235.

    Article  Google Scholar 

  45. Li M, Tang Y, Yao J. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics. 2018;10:65–73. https://doi.org/10.1016/j.pacs.2018.05.001.

    Article  Google Scholar 

  46. Li M-L, et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc IEEE. 2008;96(3):481–9. https://doi.org/10.1109/JPROC.2007.913515.

    Article  Google Scholar 

  47. Laufer J, Elwell C, Delpy D, Beard P. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution. Phys Med Biol. 2005;50(18):4409–28. https://doi.org/10.1088/0031-9155/50/18/011.

    Article  Google Scholar 

  48. Ferry JD, Morrison PR. Preparation and properties of serum and plasma proteins. VIII. The conversion of human fibrinogen to fibrin under various conditions 1,2. J Am Chem Soc. 1947;69(2):388–400. https://doi.org/10.1021/ja01194a066.

    Article  Google Scholar 

  49. Faxälv L, Tengvall P, Lindahl TL. Imaging of blood plasma coagulation and its propagation at surfaces. J Biomed Mater Res Part A. 2008;85A(4):1129–34. https://doi.org/10.1002/jbm.a.31529.

    Article  Google Scholar 

  50. Jia S, Zhang Y, Ma T, Chen H, Lin Y. Enhanced hydrophilicity and protein adsorption of titanium surface by sodium bicarbonate solution. J Nanomater. 2015;2015:e536801. https://doi.org/10.1155/2015/536801.

    Article  Google Scholar 

  51. Chueh JY, Wakhloo AK, Hendricks GH, Silva CF, Weaver JP, Gounis MJ. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. Am J Neuroradiol. 2011;32(7):1237–44. https://doi.org/10.3174/ajnr.A2485.

    Article  Google Scholar 

  52. Tang Y, Yao J. 3D Monte Carlo simulation of light distribution in mouse brain in quantitative photoacoustic computed tomography. Quant Imaging Med Surg. 2021;11(3):1046–59. https://doi.org/10.21037/qims-20-815.

    Article  MathSciNet  Google Scholar 

  53. Dohan Ehrenfest DM, Del Corso M, Diss A, Mouhyi J, Charrier J-B. Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J Periodontol. 2010;81(4):546–55. https://doi.org/10.1902/jop.2009.090531.

    Article  Google Scholar 

  54. Kim J, et al. Laser-generated-focused ultrasound transducers for microbubble-mediated, dual-excitation sonothrombolysis. In: 2016 IEEE International ultrasonics symposium (IUS); 2016. p. 1–4. https://doi.org/10.1109/ULTSYM.2016.7728473.

Download references

Acknowledgements

This work was sponsored by American Heart Association Collaborative Sciences Award (18CSA34080277); The United States National Institutes of Health (NIH) grants R21EB027981, RF1 NS115581 (BRAIN Initiative), R01 NS111039, R01 EB028143; and Chan Zuckerberg Initiative Grant (2020-226178), all to J. Yao; R21EB027304 and R01HL141967, all to X. Jiang; R01EB025205, to Y. Jing.

Funding

This work was sponsored by American Heart Association Collaborative Sciences Award (18CSA34080277); The United States National Institutes of Health (NIH) grants R21EB027981, RF1 NS115581 (BRAIN Initiative), R01 NS111039, R01 EB028143; and Chan Zuckerberg Initiative Grant (2020-226178), all to J. Yao; R21EB027304 and R01HL141967, all to X. Jiang.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yuqi Tang, Huaiyu Wu, Paul Klippel and Bohua Zhang. The first draft of the manuscript was written by Yuqi Tang and Huaiyu Wu and all authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoning Jiang or Junjie Yao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethical statement

This research does not involve human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Wu, H., Klippel, P. et al. Deep thrombosis characterization using photoacoustic imaging with intravascular light delivery. Biomed. Eng. Lett. 12, 135–145 (2022). https://doi.org/10.1007/s13534-022-00216-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-022-00216-0

Keywords

Navigation