Skip to main content
Log in

Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The multi-disciplinary field of microfluidics has the potential to provide solutions to a diverse set of problems. It offers the advantages of high-throughput, continuous, rapid and expeditious analysis requiring minute quantities of sample. However, even as this field has yielded many mass-manufacturable and cost-efficient point-of-care devices, its direct and practical applications into the field of disease diagnostics still remain limited and largely overlooked by the industry. This review focuses on the phenomenon of hydrodynamic focusing and its potential to materialize solutions for appropriate diagnosis and prognosis. The study aims to look beyond its intended cytometric applications and focus on unambiguous disease detection, monitoring, drug delivery, studies conducted on DNA and highlight the instances in the scientific literature that have proposed such approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nguyen NT. Fundamentals and applications of microfluidics. 2nd ed. Norwood: Artech House; 2006.

    MATH  Google Scholar 

  2. Bruus H. Theoretical microfluidics. Oxford: Oxford University Press; 2008.

    Google Scholar 

  3. Stone HA, Kim S. Microfluidics: basic issues, applications, and challenges. AIChE J. 2001;47(6):1250–4.

    Google Scholar 

  4. Tabeling P. Introduction to microfluidics. Oxford: OUP Oxford University Press Inc.; 2005.

    Google Scholar 

  5. Mauldin WP, Ross JA. Family planning programs: efforts and results, 1982–89. Stud Fam Plan 1991. 1991;22(6):350–67.

    Google Scholar 

  6. Bangdiwala SI, Fonn S, Okoye O, Tollman S. Workforce resources for health in developing countries. Public Health Rev. 2010;32(1):296.

    Google Scholar 

  7. Koplow DA. Smallpox: the fight to eradicate a global scourge. J Clin Investig. 2003;112(12):1775.

    Google Scholar 

  8. Bailey P. The top 10: epidemic hall of infamy. In: Summer 2006: epidemics on the horizon. U C Davis magazine. 2008. http://magazinearchive.ucdavis.edu/issues/su06/feature_1b.html. Accessed 24 Aug 2019.

  9. Taubenberger JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22.

    Google Scholar 

  10. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, Winget M, Yasui Y. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93(14):1054–61.

    Google Scholar 

  11. Landier J, Parker DM, Thu AM, Carrara VI, Lwin KM, Bonnington CA, Pukrittayakamee S, Delmas G, Nosten FH. The role of early detection and treatment in malaria elimination. Malar J. 2006;15(1):363.

    Google Scholar 

  12. Zaaijer HL, Exel-Oehlers PV, Kraaijeveld T, Altena E, Lelie PN. Early detection of antibodies to HIV-1 by third-generation assays. Lancet. 1992;340(8822):770–2.

    Google Scholar 

  13. Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.

    Google Scholar 

  14. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. 2011;84(2):487–515.

    Google Scholar 

  15. Lee J, Lee SH. Lab on a chip for in situ diagnosis: from blood to point of care. Biomed Eng Lett. 2013;3(2):59–66.

    MathSciNet  Google Scholar 

  16. Chin CD, Chin SY, Laksanasopin T, Sia SK. Low-cost microdevices for point-of-care testing. In: Issadore D, Westervelt RM, editors. Point-of-care diagnostics on a chip. Heidelberg: Springer; 2013. p. 3–21.

    Google Scholar 

  17. Rusling JF, Kumar CV, Gutkind JS, Patel V. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst. 2010;135(10):2496–511.

    Google Scholar 

  18. Jung W, Han J, Choi JW, Ahn CH. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng. 2015;132:46–57.

    Google Scholar 

  19. Yetisen AK, Akram MS, Lowe CR. Paper based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–51.

    Google Scholar 

  20. Sharma S, Zapatero-Rodríguez J, Estrela P, O’Kennedy R. Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosens J. 2015;5(3):577–601.

    Google Scholar 

  21. Vembadi A, Menachery A, Qasaimeh MA. Cell cytometry: review and perspective on biotechnological advances. Front Bioeng Biotechnol. 2019;7:147.

    Google Scholar 

  22. Yang L, Yamamoto T. Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol. 2016;7:1500.

    Google Scholar 

  23. Wilkerson MJ. Principles and applications of flow cytometry and cell sorting in companion animal medicine. Vet Clin North Am Small Anim Pract. 2012;42(1):53–71.

    Google Scholar 

  24. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–76.

    Google Scholar 

  25. Gupta A, Harrison PJ, Wieslander H, Pielawski N, Kartasalo K, Partel G, Solorzano L, Suveer A, Klemm AH, Spjuth O, Sintorn IM. Deep learning in image cytometry: a review. Cytom A. 2019;95(4):366–80.

    Google Scholar 

  26. Rosenbluth MJ, Lam WA, Fletcher DA. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip. 2008;8(7):1062–70.

    Google Scholar 

  27. Nash GB, Johnson CS, Meiselman HJ. Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease. Blood. 1984;63(1):73–82.

    Google Scholar 

  28. Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ. Hirschsprung disease is linked to defects in neural crest stem cell function. Science. 2003;301(5635):972–6.

    Google Scholar 

  29. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977;50(3):481–92.

    Google Scholar 

  30. Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 2005;1(1):15–30.

    Google Scholar 

  31. Janmey PA, Miller RT. Mechanisms of mechanical signaling in development and disease. J Cell Sci. 2011;124(1):9–18.

    Google Scholar 

  32. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368.

    Google Scholar 

  33. Russell S. The economic burden of illness for households in developing countries: a review of studies focusing on malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome. Am J Trop Med Hyg. 2004;71((2_suppl)):147–55.

    Google Scholar 

  34. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990.

    Google Scholar 

  35. Boutayeb A, Boutayeb S. The burden of non-communicable diseases in developing countries. Int J Equity Health. 2005;4(1):2.

    Google Scholar 

  36. Boutayeb A. The double burden of communicable and non-communicable diseases in developing countries. Trans R Soc Trop Med Hyg. 2006;100(3):191–9.

    Google Scholar 

  37. Dinnes J, Deeks J, Kunst H, Gibson A, Cummins E, Waugh N, Lalvani A. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess. 2007;11(3):1–196.

    Google Scholar 

  38. Guinovart C, Navia MM, Tanner M, Alonso PL. Malaria: burden of disease. Curr Mol Med. 2006;6(2):137–40.

    Google Scholar 

  39. Lee WG, Kim YG, Chung BG, Demirci U, Khademhosseini A. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev. 2010;62(4–5):449–57.

    Google Scholar 

  40. McKeon J. Estimating the global health impact of improved diagnostic tools for the developing world. In: RAND health. 2007. https://www.rand.org/pubs/research_briefs/RB9293/index1.html. Accessed 24 Aug 2019.

  41. Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(3):293–301.

    Google Scholar 

  42. Hartley D. Rural health disparities, population health, and rural culture. Am J Public Health. 2004;94(10):1675–8.

    Google Scholar 

  43. Perrott GSJ, Holland DF. Population trends and problems of public health. Milbank Q. 1940;83(4):569–608.

    Google Scholar 

  44. Adams JD, Kim U, Soh HT. Multitarget magnetic activated cell sorter. Proc Natl Acad of Sci USA. 2008;105(47):18165–70.

    Google Scholar 

  45. Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, Mathiot C, Pierga JY, Fraisier V, Salamero J, Saada V. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad of Sci USA. 2010;107(33):14524–9.

    Google Scholar 

  46. Pamme N, Wilhelm C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip. 2006;6(8):974–80.

    Google Scholar 

  47. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices. 2006;8(4):299.

    Google Scholar 

  48. Inglis DW, Riehn R, Austin RH, Sturm JC. Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett. 2004;85(21):5093–5.

    Google Scholar 

  49. Alshareef M, Metrakos N, Juarez Perez E, Azer F, Yang F, Yang X, Wang G. Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics. 2013;7(1):11803.

    Google Scholar 

  50. Du E, Dao M, Suresh S. Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system. Extreme Mech Lett. 2014;1:35–41.

    Google Scholar 

  51. Hyun KA, Jung HI. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis. 2013;34(7):1028–41.

    Google Scholar 

  52. de la Rosa C, Tilley PA, Fox JD, Kaler KV. Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis. IEEE Trans Biomed Eng. 2008;55(10):2426–32.

    Google Scholar 

  53. Adekanmbi EO, Srivastava SK. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms. Lab Chip. 2016;16(12):2148–67.

    Google Scholar 

  54. Qi A, Friend JR, Yeo LY, Morton DA, McIntosh MP, Spiccia L. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab Chip. 2009;9(15):2184–93.

    Google Scholar 

  55. Yeo LY, Friend JR. Surface acoustic wave microfluidics. Ann Rev Fluid Mech. 2014;46:379–406.

    MathSciNet  MATH  Google Scholar 

  56. Ding X, Peng Z, Lin SCS, Geri M, Li S, Li P, Chen Y, Dao M, Suresh S, Huang TJ. Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci USA. 2014;111(36):12992–7.

    Google Scholar 

  57. Sivanantha N, Ma C, Collins DJ, Sesen M, Brenker J, Coppel RL, Neild A, Alan T. Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics. Appl Phys Lett. 2014;105(10):103704.

    Google Scholar 

  58. Destgeer G, Sung HJ. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip. 2015;15(13):2722–38.

    Google Scholar 

  59. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Med Biol Eng Comput. 2010;48(10):999–1014.

    Google Scholar 

  60. Chen X, Liu CC, Li H. Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuators B Chem. 2008;130(1):216–21.

    Google Scholar 

  61. Li X, Chen W, Liu G, Lu W, Fu J. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip. 2014;14(14):2565–75.

    Google Scholar 

  62. Mach AJ, Di Carlo D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng. 2010;107(2):302–11.

    Google Scholar 

  63. Choi S, Song S, Choi C, Park JK. Continuous blood cell separation by hydrophoretic filtration. Lab Chip. 2007;7(11):1532–8.

    Google Scholar 

  64. Sundararajan N, Pio MS, Lee LP, Berlin AA. Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J Microelectromech S. 2004;13(4):559–67.

    Google Scholar 

  65. Wu Z, Nguyen NT. Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sens Actuators B Chem. 2005;107(2):965–74.

    Google Scholar 

  66. Daniele MA, Boyd DA, Mott DR, Ligler FS. 3D hydrodynamic focusing microfluidics for emerging sensing technologies. Biosens Bioelectron. 2015;67:25–34.

    Google Scholar 

  67. Tripathi S, Chakravarty P, Agrawal A. On non-monotonic variation of hydrodynamically focused width in a rectangular microchannel. Curr Sci. 2014;107(8):1260–74.

    Google Scholar 

  68. Dziubinski M. Hydrodynamic focusing in microfluidic devices. In: Kelly R, editor. Advances in microfluidics. London: IntechOpen; 2012. p. 29–54.

    Google Scholar 

  69. Golden JP, Justin GA, Nasir M, Ligler FS. Hydrodynamic focusing—a versatile tool. Anal Bioanal Chem. 2013;402(1):325–35.

    Google Scholar 

  70. Tripathi S, Kumar A, Kumar YBV, Agrawal A. Three-dimensional hydrodynamic flow focusing of dye, particles and cells in a microfluidic device by employing two bends of opposite curvature. Microfluid Nanofluidics. 2016;20(2):34.

    Google Scholar 

  71. Ligler FS, Kim JS. The microflow cytometer. New York: Jenny Stanford Publishing; 2010.

    Google Scholar 

  72. Tripathi S, Kumar YBV, Prabhakar A, Joshi SS, Agrawal A. Passive blood plasma separation at the microscale: a review of design principles and microdevices. J Micromech Microeng. 2015;25(8):083001.

    Google Scholar 

  73. Yang AS, Hsieh WH. Hydrodynamic focusing investigation in a micro-flow cytometer. Biomed Microdevices. 2007;9(2):113–22.

    MathSciNet  Google Scholar 

  74. Kunstmann-Olsen C, Hoyland JD, Rubahn HG. Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluid Nanofluidics. 2012;12(5):795–803.

    Google Scholar 

  75. Rodriguez-Trujillo R, Mills CA, Samitier J, Gomila G. Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid Nanofluidics. 2007;3(2):171–6.

    Google Scholar 

  76. Simonnet C, Groisman A. Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett. 2005;87(11):114104.

    Google Scholar 

  77. Lee GB, Chang CC, Huang SB, Yang RJ. The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng. 2006;16(5):1024.

    Google Scholar 

  78. Knight JB, Vishwanath A, Brody JP, Austin RH. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett. 1998;80(17):3863.

    Google Scholar 

  79. Stiles PJ, Fletcher DF. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel. Lab Chip. 2004;4(2):121–4.

    Google Scholar 

  80. Shivhare PK, Bhadra A, Sajeesh P, Prabhakar A, Sen AK. Hydrodynamic focusing and interdistance control of particle-laden flow for microflow cytometry. Microfluid Nanofluidics. 2016;20(6):86.

    Google Scholar 

  81. Sadeghi A. Micromixing by two-phase hydrodynamic focusing: a 3d analytical modeling. Chem Eng Sci. 2018;176:180–91.

    Google Scholar 

  82. Amini H, Sollier E, Masaeli M, Xie Y, Ganapathysubramanian B, Stone HA, Di Carlo D. Engineering fluid flow using sequenced microstructures. Nat Commun. 2013;4:1826.

    Google Scholar 

  83. Sundararajan N, Pio MS, Lee LP, Berlin AA. Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J Microelectromech Syst. 2004;13(4):559–67.

    Google Scholar 

  84. Simonnet C, Groisman A. High-throughput and high-resolution flow cytometry in molded microfluidic devices. Anal Chem. 2006;78(16):5653–63.

    Google Scholar 

  85. Chang CC, Huang ZX, Yang RJ. Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. J Micromech Microeng. 2007;17(8):1479.

    Google Scholar 

  86. Kennedy MJ, Stelick SJ, Perkins SL, Cao L, Batt CA. Hydrodynamic focusing with a microlithographic manifold: controlling the vertical position of a focused sample. Microfluid Nanofluidics. 2009;7(4):569.

    Google Scholar 

  87. Lin SC, Yen PW, Peng CC, Tung YC. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lab Chip. 2012;12(17):3135–41.

    Google Scholar 

  88. Ha BH, Lee KS, Jung JH, Sung HJ. Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow. Microfluid Nanofluidics. 2014;17(4):647–55.

    Google Scholar 

  89. Mao X, Nawaz AA, Lin SCS, Lapsley MI, Zhao Y, McCoy JP, El-Deiry WS, Huang TJ. An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing. Biomicrofluidics. 2012;6(2):024113.

    Google Scholar 

  90. Chung S, Park SJ, Kim JK, Chung C, Han DC, Chang JK. Plastic microchip flow cytometer based on 2- and 3-dimensional hydrodynamic flow focusing. Microsyst Technol. 2003;9:525–33.

    Google Scholar 

  91. Knight JB, Vishwanath A, Brody JP, Austin RH. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett. 1998;80:3863.

    Google Scholar 

  92. Zhan Y, Loufakis DN, Bao N, Lu C. Characterizing osmotic lysis kinetics under microfluidic hydrodynamic focusing for erythrocyte fragility studies. Lab Chip. 2012;12(23):5063–8.

    Google Scholar 

  93. Moehlenbrock MJ, Price AK, Martin RS. Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes. Analyst. 2006;131(8):930–7.

    Google Scholar 

  94. Koh CG, Zhang X, Liu S, Golan S, Yu B, Yang X, Guan J, Jin Y, Talmon Y, Muthusamy N, Chan KK. Delivery of antisense oligodeoxyribonucleotidelipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing. J Control Release. 2010;141(1):62–9.

    Google Scholar 

  95. Frankowski M, Bock N, Kummrow A, Schädel-Ebner S, Schmidt M, Tuchscheerer A, Neukammer J. A microflow cytometer exploited for the immunological differentiation of leukocytes. Cytom A. 2011;79(8):613–24.

    Google Scholar 

  96. Frankowski M, Theisen J, Kummrow A, Simon P, Ragusch H, Bock N, Schmidt M, Neukammer J. Microflow cytometers with integrated hydrodynamic focusing. Sensors. 2013;13(4):4674–93.

    Google Scholar 

  97. Kent NJ, O’Brien S, Basabe-Desmonts L, Meade GR, MacCraith BD, Corcoran BG, Kenny D, Ricco AJ. Shear-mediated platelet adhesion analysis in less than 100 μl of blood: toward a POC platelet diagnostic. IEEE Trans Biomed Eng. 2010;58(3):826–30.

    Google Scholar 

  98. Hess JR. Measures of stored red blood cell quality. Vox Sang. 2014;107(1):1–9.

    Google Scholar 

  99. Zheng Y, Chen J, Cui T, Shehata N, Wang C, Sun Y. Characterization of red blood cell deformability change during blood storage. Lab Chip. 2013;14(3):577–83.

    Google Scholar 

  100. Hood RR, DeVoe DL, Atencia J, Vreeland WN, Omiatek DM. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array. Lab Chip. 2014;14(14):2403–9.

    Google Scholar 

  101. Lo CT, Jahn A, Locascio LE, Vreeland WN. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir. 2010;26(11):8559–66.

    Google Scholar 

  102. Damiati S, Kompella U, Damiati S, Kodzius R. Microfluidic devices for drug delivery systems and drug screening. Genes (Basel). 2018;9(2):103.

    Google Scholar 

  103. Schick I, Lorenz S, Gehrig D, Tenzer S, Storck W, Fischer K, Strand D, Laquai F, Tremel W. Inorganic Janus particles for biomedical applications. Beilstein J Nanotechnol. 2014;5(1):2346–62.

    Google Scholar 

  104. Xie H, She ZG, Wang S, Sharma G, Smith JW. One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir. 2012;28(9):4459–63.

    Google Scholar 

  105. Lone S, Cheong IW. Fabrication of polymeric Janus particles by droplet microfluidics. RSC Adv. 2014;4(26):13322–33.

    Google Scholar 

  106. Wang F, Wang H, Wang J, Wang HY, Rummel PL, Garimella SV, Lu C. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing. Biotechnol Bioeng. 2008;100(1):150–8.

    Google Scholar 

  107. Li Y, Xu F, Liu C, Xu Y, Feng X, Liu BF. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA–protein interaction. Analyst. 2013;138(16):4475–82.

    Google Scholar 

  108. Wong PK, Lee YK, Ho CM. Deformation of DNA molecules by hydrodynamic focusing. J Fluid Mech. 2003;497:55–65.

    MATH  Google Scholar 

  109. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12(12):2118–34.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the aid provided by the Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus via ‘Research Initiation Grant’.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript: AR, Writing: AR, Reviewing and editing the final manuscript: ST, Writing the original draft: AR, Figure preparation: AR, Resources: ST.

Corresponding author

Correspondence to Siddhartha Tripathi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajawat, A., Tripathi, S. Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry. Biomed. Eng. Lett. 10, 241–257 (2020). https://doi.org/10.1007/s13534-019-00144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-019-00144-6

Keywords

Navigation