Skip to main content
Log in

Potential bioactivity of Algerian olive pomace hydro-ethanolic extract: phytochemical investigation, antioxidant activity, and acute toxicity

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Several phytochemical studies have reported that olive pomace is a valuable source of bioactive molecules with various biological properties. In this context, our study aimed to investigate the phytochemistry and acute toxicity of the hydro-ethanolic extract from this by-product.

Methods

The phytochemical study investigates the total phenolic content, tannin and flavonoid levels, antioxidant capacity and acute toxicity of the hydro-ethanolic extract from olive pomace.

Results

The extract showed a yield of 8.66% and a high concentration of phenolic compounds, tannins, and flavonoids, with antioxidant potential values of 90.139 ± 15.545 mg GAE/g DW, 7.307 ± 0.96 mg CE/g DW and 73.968 ± 1.081 mg QE/g DW, respectively. The antioxidant capacity of the extract was determined by the DPPH test, which showed an EC50 value of 1.705 ± 0.023 mg GAE/mL, a FRAP value of 2.708 ± 0.226 mg/mL, and a TAC value of 45.41 ± 4.808 mg GAE/g DW. In the acute toxicity test, hydro-ethanolic extract was administered at different doses to male and female groups. Notably, no significant toxicities or deaths were observed during treatment. This shows that the oral LD50 of the extract exceeds 5000 mg/kg body weight. At low doses, this extract displayed beneficial effects on blood sugar, cholesterol and triglyceride levels, and caused more marked weight gain in males compared to females, affecting the relative weight of specific organs and tissues. However, at doses above 500 mg/kg body weight, the extract led to liver and kidney dysfunction, resulting in changes in hematological and biochemical parameters. Fortunately, histological examination of various organs revealed no tissue damage.

Conclusion

Our results showed that the hydro-ethanolic extract of olive pomace constitutes a potential source of pharmacological molecules that are effective in maintaining cellular function and have a wide safety margin for therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DW:

Dry weight

OP:

Olive pomace

BW:

Body weight

RBC:

Red blood cells

WBC:

White blood cells

HGB:

Hemoglobin

MCV:

Mean corpuscular volume

MCH:

Mean corpuscular hemoglobin

MCHC:

Mean corpuscular hemoglobin concentration

HCT:

Hematocrit

ALT:

Alanine aminotransferases

AST:

Aspartate aminotransferase

TG:

Triglycerides

HDL-C:

High density lipoprotein cholesterol

HEE:

Hydro-ethanolic extract

CBC:

Complete blood count

EDTA:

Ethylene diamine tetra-acetic acid

IOC:

International Olympic Committee

References

  1. Abu Tayeh HN, Azaizeh H, Gerchman Y (2020) Circular economy in olive oil production-olive mill solid waste to ethanol and heavy metal sorbent using microwave pretreatment. Waste Manag 113:321–328. https://doi.org/10.1016/j.wasman.2020.06.017

    Article  CAS  PubMed  Google Scholar 

  2. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ (2022) Molecules Flavonoids as Potential Anti-Inflammatory Molecules. Molecule 27:2901. https://doi.org/10.3390/molecules27092901

    Article  CAS  Google Scholar 

  3. Almi D (2010) Etude du pouvoir antioxydant des composés et extraits polyphénoliques issus des olives et sous-produits de l’olivier (feuilles et margines) variété chamlal sur l’oxydation thermique simulant la friture de deux huiles à large consommation: l’huile d’olive et l’huile de tournesol. Dissertation, University Mouloud Mammeri

  4. Amrane S, Bedouhene F, Boussaada I, Niculescu SI (2018) On qualitative properties of low-degree quasipolynomials: further remarks on the spectral abscissa and rightmost-roots assignment. Bull Math Soc Sci Math Roum 61:361–381

    MathSciNet  Google Scholar 

  5. Badi Z, Guermouche B, Haddam N, Belyagoubi N, Rouigueb K, Benzerjeb H, Dali-Sahi M, Kechkouche Y, Merzouk H (2022) Assessment of acute and sub-acute toxicity of olive pomace infemale Wistar rats. World Cancer Res J 9:2359

    Google Scholar 

  6. Balogun SO, Da Silva IF, Colodel EM, De Oliveira RG, Ascêncio SD, De Oliveira Martins DT (2014) Toxicological evaluation of hydro-ethanolic extract of Helicteres sacarolha A. St.-Hil. et al. J Ethnopharmacol 157:285–291

    Article  PubMed  Google Scholar 

  7. Banias G, Achillas C, Vlachokostas C, Moussiopoulos N, Stefanou M (2017) Environmental impacts in the life cycle of olive oil: a literature review. J Sci Food Agric 97:1686–1697. https://doi.org/10.1002/jsfa.8143

    Article  CAS  PubMed  Google Scholar 

  8. Bilbao-Meseguer I, Rodríguez-Gascón A, Barrasa H, Isla A, Solinís MÁ (2018) Augmented renal clearance in critically Ill patients: a systematic review. Clin Pharmacokinet 57:1107–1121. https://doi.org/10.1007/s40262-018-0636-7

    Article  CAS  PubMed  Google Scholar 

  9. Bursal E, Gülçin İ (2011) Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int 44:1482–1489. https://doi.org/10.1016/j.foodres.2011.03.031

    Article  CAS  Google Scholar 

  10. Čepo DV, Radić K, Jurmanović S, Jug M, Rajković MG, Pedisić S, Moslavac T, Albahari P (2018) Valorization of olive pomace-based nutraceuticals as antioxidants in chemical, food, and biological models. Molecules 23:2070. https://doi.org/10.3390/molecules23082070

    Article  CAS  Google Scholar 

  11. Cherrad H, Bouderbala S, Zidan Y, Krouf D (2020) Olive cake reduces glycaemia and lipemia and increases antioxidant enzymes in STZ-induced diabetes in rat erythrocytes and tissues. Nutr Food Sci 50:360–372. https://doi.org/10.1108/NFS-03-2019-0080

    Article  Google Scholar 

  12. De Bruno A, Romeo R, Fedele FL, Sicari A, Piscopo A, Poiana M (2018) Antioxidant activity shown by olive pomace extracts. J Environ Sci Health B 53:526–533. https://doi.org/10.1080/03601234.2018.1462928

    Article  CAS  PubMed  Google Scholar 

  13. Diaby Vandjiguiba Yapo AE, Adon AM, Yapi HF, Djama AJ, Dosso M (2017) Biotoxicité hématologique du sulfate de cadmium chez les rats Wistar. Int J Biol Chem Sci 10:1765–1772. https://doi.org/10.4314/ijbcs.v10i4.25

    Article  CAS  Google Scholar 

  14. El-Tarabily KA, El-Saadony MT, Alagawany M, Arif M, Batiha GE, Khafaga AF, Elwan HAM, Elnesr SS, Abd El-Hack M (2021) Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J Biol Sci 28:5145–5156. https://doi.org/10.1016/j.sjbs.2021.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gabol K, Khan Z, Umair M, Khan A, Fatima F, Siddiqui S, Jabeen T, Baig N, Iqbal M, Usman M, Hashmi M, Tabish M (2014) Induced effects of lead, chromium and cadmium on gallus domesticus. Can J Pure Appl Sci 8:3035–3042

    Google Scholar 

  16. Gome MB, Kouakou K, Toure A, Traore F (2012) Étude de la toxicité aiguë et subchronique de l’extrait aqueux de Passiflora foetida Linn. (Passifloraceae) chez les rats et les souris. Int J Biol Chem Sci 5:1777–1789. https://doi.org/10.4314/ijbcs.v5i5.1

    Article  Google Scholar 

  17. Gómez-Cruz I, Contreras MM, Romero I, Castro E (2022) Recovery of antioxidant compounds from exhausted olive pomace through microwave-assisted extraction. Biol Life Sci Forum 6:62. https://doi.org/10.3390/Foods2021-10971

    Article  Google Scholar 

  18. Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JWE, Cajlakovic M, Ribitsch V, Clément K (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124:67–76. https://doi.org/10.1161/CIRCULATIONAHA.111.027813

    Article  CAS  PubMed  Google Scholar 

  19. Hadjloune H, Kihal O, Kaci A, Belhoadjeb FA (2021) Quel avenir pour la filière huile d’olive fraîchement introduite dans une zone steppique? Cas de la région de M’Sila. New Medit 20:125–140

    Google Scholar 

  20. Haouas A, Tallou A, Shavandi A, El Achaby M, Aziz K, El Ghadraoui A, Aziz F (2022) Olive waste as a promising approach to produce antioxidants, biofertilizers and biogas. In: Ramadan MF, Farag MA (eds) Mediterranean fruits bio-wastes. Springer, Cham, pp 115–129

    Chapter  Google Scholar 

  21. Henry S (2018) L’huile d’olive: son intérêt nutritionnel, ses utilisations en pharmacie et en cosmétique. Dissertation, University Henri Poincaré. https://hal.univ-lorraine.fr/hal-01731806

  22. Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217. https://doi.org/10.1021/jf00062a013

    Article  CAS  Google Scholar 

  23. Kadekar S, Peddada S, Silins I, French JE, Högberg J, Stenius U (2012) Gender differences in chemical carcinogenesis in national toxicology program 2-year bioassays. Toxicol Pathol 40:1160–1168. https://doi.org/10.1177/0192623312446527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim TH, Koh YH, Kim BH, Kim MJ, Lee JH, Park B, Park JW (2021) Proton beam radiotherapy versus radiofrequency ablation for recurrent hepatocellular carcinoma: a randomized phase III trial. J Hepatol 74:603–612. https://doi.org/10.1016/j.jhep.2020.09.02

    Article  CAS  PubMed  Google Scholar 

  25. Kouadio AL, Gnahoue G, Kple MKT, Abizi G, Kone SD, Kra MKA (2022) Effet des extraits des feuilles de Ficus sycomorus sur les paramètres hématologiques et biochimiques des rats Wistar. Int J Biol Chem Sci 16:680–694. https://doi.org/10.4314/ijbcs.v16i2.14

    Article  CAS  Google Scholar 

  26. Koudou DD (2019) Toxicité subchronique chez le rat de l’extrait d’acétate d’éthyle des feuilles de Holarrhena floribunda (G. DON) T. Durand & Schinz, une plante utilisée dans le traitement traditionnel du diabète en Côte d’Ivoire. Dissertation, University Nangui Abrogoua. https://riip.hal.science/tel-02703666

  27. Machado-Carvalho L, Martins T, Aires A, Marques G (2023) Optimization of phenolic compounds extraction and antioxidant activity from Inonotus hispidus using ultrasound-assisted extraction technology. Metabolites 13:524. https://doi.org/10.3390/metabo13040524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mishra K, Siwal SS, Nayaka SC, Guan Z, Thakur VK (2023) Waste-to-chemicals: green solutions for bioeconomy markets. Sci Total Environ 887:164006. https://doi.org/10.1016/j.scitotenv.2023.164006

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Najla T, Habibi M, Ammar MH, Abazza L, Mhamdi R (2022) Olive fruit by-products: from waste streams into a promising source of value-added products. In: Ramadan MF, Farag MA (eds) Mediterranean fruits bio-wastes. Springer, Cham, pp 47–66

    Chapter  Google Scholar 

  30. Nunes AM, Costa ASG, Bessada S, Santos J, Puga H, Alves C (2018) Olive pomace as a valuable source of bioactive compounds: a study regarding its lipid- and water-soluble components. Sci Total Environ 644:229–236. https://doi.org/10.1016/j.scitotenv.2018.06.350

    Article  ADS  CAS  Google Scholar 

  31. Ouahchia C, Cherif H, Hamaidi-chergui F, Loubna M, Hemma R, Deradji S, Nouar N, Saidi F (2017) Toxicité aiguë et subaiguë des extraits méthanoliques d’Inula viscosa L. Agrobiologia 7:562–573

    Google Scholar 

  32. Peyrol J, Riva C, Amiot MJ (2017) Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders. Nutrients 9:306. https://doi.org/10.3390/nu9030306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poontawee W, Natakankitkul S, Wongmekiat O (2016) Protective effect of Cleistocalyx nervosum var. paniala fruit extract against oxidative renal damage caused by cadmium. Molecules 21:133. https://doi.org/10.3390/molecules21020133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Portarena S, Baldacchini C, Brugnoli E (2017) Geographical discrimination of extravirgin olive oils from the Italian coasts by combining stable isotope data and carotenoid content within a multivariate analysis. Food Chem 215:1–6. https://doi.org/10.1016/j.foodchem.2016.07.135

    Article  CAS  PubMed  Google Scholar 

  35. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  36. Ramadan MF, Farag MA (2022) Mediterranean fruits bio-wastes, chemistry functionality and techno-applications. Springer, Cham

    Book  Google Scholar 

  37. Ribeiro TB, Oliveira AL, Costa C, Nunes J, Vicente AA, Pintado M (2020) Total and sustainable valorisation of olive pomace using a fractionation approach. Appl Sci 10:6785. https://doi.org/10.3390/app10196785

    Article  CAS  Google Scholar 

  38. Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2%3c270::AID-JSFA945%3e3.0.CO;2-9

    Article  Google Scholar 

  39. Senani-Oularbi N, Benna D, Marie JC, Moulti-Mati F (2016) Preliminary effects of olive mill wastewater on the glucose absorption in mice. Algerian J Environ Sci Technol 2:10–14

    Google Scholar 

  40. Shata FY, El-Nattat WS, Desouky HM, Mohamed AH, Ahmed AR (2014) Protective effects of vitamin E, selenium and zinc supplementation on hematological and some biochemical parameters in pregnant rats exposed to cadmium. Global J Pharmacol 8:665–672

    Google Scholar 

  41. Sherazede B, Adila O, Jihane B, Kheira M, Mohammed A, Malika B (2015) Les grignons d’olive réduisent la cholestérolémie et la triglycéridémie et atténuent la peroxydation lipidique sérique chez le rat consommant un régime enrichi en Cholestérol. Nutr Santé 3:23–31

    Google Scholar 

  42. Singleton VL (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Article  CAS  Google Scholar 

  43. Sindete M, Gbankoto A, Ganfon H, Osseni R, Yemoa A, Laleye A (2019) Safety assessment of the ethanol extract of Caesalpinia bonduc (L.) Root in Wistar rats: acute and subacute (28-day) oral toxicity studies. Natl J Physiol Pharm Pharmacol 9:1267–1277. https://doi.org/10.5455/njppp.2019.9.1034131102019

    Article  CAS  Google Scholar 

  44. Suharni S, Indarto D, Cilmiaty R (2021) Comparison of ethanol and methanol extracts of bay leaves (Syzygium polyanthum) in terms of vitamin C, iron and phytochemical levels. EAI. https://doi.org/10.4108/eai.17-7-2021.2312403

  45. Triguin S, Boubakaer F, Mrabet H, Lassoued N, Alaya W, Zantour B, Sfar M (2023) Diabète de type 2 et pathologies endocriniennes? Cause ou conséquence? Ann Endocrinol 84:181

    Article  Google Scholar 

  46. Yakhlef W, Arhab R, Romero C, Brenes M, de Castro A, Medina E (2018) Phenolic composition and antimicrobial activity of Algerian olive products and by-products. LWT 93:323–328. https://doi.org/10.1016/j.lwt.2018.03.044

    Article  CAS  Google Scholar 

  47. Yang Y, Park J, You SG, Hong S (2019) Immuno-stimulatory effects of sulfated polysaccharides isolated from Codium fragile in olive flounder, Paralichthys olivaceus. Fish Shellfish Immunol 87:609–614. https://doi.org/10.1016/j.fsi.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  48. Zeb A, Haq I (2019) polyphenolic composition, lipid peroxidation and antioxidant properties of chapli kebab during repeated frying process. J Food Meas Charact 12:1–9. https://doi.org/10.1007/s11694-017-9667-2

    Article  Google Scholar 

  49. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabila Belyagoubi-Benhammou.

Ethics declarations

Conflict of interest

Benmeliani Fatiha, Guermouche Baya, Benhamou-Belyagoubi Nabila, Bendiab Hadjer, Tahir Fatima, Benousser Nesrine, Haddam Nahida, Badi Zoulikha, Merzouk Hafida, Kherraf Yamna declared that they have no conflict of interest.

Ethical approval

Ethical approval of all stages of this experiment was obtained in accordance with OECD (Organization for Economic Cooperation and Development) guidelines 425 (2022).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmeliani, F., Guermouche, B., Chenini-Bendiab, H. et al. Potential bioactivity of Algerian olive pomace hydro-ethanolic extract: phytochemical investigation, antioxidant activity, and acute toxicity. Toxicol. Environ. Health Sci. 16, 49–61 (2024). https://doi.org/10.1007/s13530-023-00197-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00197-2

Keywords

Navigation