Skip to main content
Log in

Aptasensors for Pesticide Detection

  • Mini review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Pesticides are one of the prominent issues in food safety and environmental pollution, and a rapid pesticide residue detection method is urgently needed to keep humans from being affected. Aptamers are single stranded DNA- and RNA- based oligonucleotides that can bind to their targets with high affinity and specificity, and have tremendous applications as therapeutic and diagnostic agent. The properties of conformational changes upon target-analyte binding make them most appropriate and suitable candidate to design label free and portable bio-devices for analytical applications.

Purpose of Review:Although aptamer applications are dominated by clinical or medical diagnostics, initial steps have been taken for the application of aptamers to ensure food safety. In this review, we discuss the role of aptamers in the detection of pesticides whose presence in foods pose serious threat to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO (Food and Agriculture Organization); WHO (World Health Organization). Manual on Development and Use of FAO and WHO Specifications for Pesticides, https:// www.who.int/whopes/resources/9789251092651/en/ (2016).

    Google Scholar 

  2. Jin, B., Xie, L., Guo, Y. & Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int. 46, 399–409 (2012).

    Article  CAS  Google Scholar 

  3. Liu, D. et al. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 84, 4185–4191 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, J. & Lee, H. K. Fully automated dynamic in–syringe liquid–phase microextraction and on–column derivatization of carbamate pesticides with gas chromatography/ mass spectrometric analysis. Anal. Chem. 83, 6856–6861 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Martínez–Uroz, M. A., Mezcua, M., Valles, N. B. & Fernández–Alba, A. R. Determination of selected pesticides by GCwith simultaneous detection by MS(NCI) and µ–ECD in fruit and vegetable matrices. Anal. Bioanal. Chem. 402, 1365–1372 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Punzi, J. S., Lamont, M., Haynes, D. & Epstein, R. L. USDA pesticide data program: pesticide residues on fresh and processed fruit and vegetables, grains, meats, milk, and drinking water. Outlooks on Pest Management 16, doi: 10.1564/16jun12 (2005).

  7. Van Dorst, B. tet al. Recent advances in recognition elements of food and environmental biosensors: a review. {iBiosens. Bioelectron}. 26, 1178–1194 (2010).

    Article  CAS  Google Scholar 

  8. Wang, L. et al. Development of a specific enzymelinked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticide fenthion in real samples based on monoclonal antibody. Anal. Lett. 44, 1591–1601 (2011).

    Article  CAS  Google Scholar 

  9. Xu, Z. L. et al. Monitoring of organophosphorus pesticides in vegetables using monoclonal antibody–based direct competitive ELISA followed by HPLC–MS/MS. Food Chem. 131, 1569–1576 (2012).

    Article  CAS  Google Scholar 

  10. Hua, X. et al. Multi–analyte enzyme–linked immunosorbent assay for organophosphorus pesticides and neonicotinoid insecticides using a bispecific monoclonal antibody. Anal. Method. 5, 1556–1563 (2013).

    Article  CAS  Google Scholar 

  11. Ercegovich, C. D. et al. Development of a radioimmunoassay for parathion. J. Agric. Food Chem. 29, 559–563 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Hall, J. C., Deschamps, R. J. & Krieg, K. K. Immunoassays for the detection of 2, 4–D and picloram in river water and urine. J. Agric. Food Chem. 37, 981–984 (1989).

    Article  CAS  Google Scholar 

  13. Guo, Y., Tian, J., Liang, C., Zhu, G. & Gui, W. Multiplex bead–array competitive immunoassay for simultaneous detection of three pesticides in vegetables. Microchim. Act. 180, 387–395 (2013).

    Article  CAS  Google Scholar 

  14. White, S. in Handbook of Food Analysis, Second Edition–3 Volume Set (CRC Press, USA, 2004).

    Google Scholar 

  15. Verma, N. & Bhardwaj, A. Biosensor technology for pesticides—a review. Biotechnol. Appl. Biochem. 175, 3093–3119 (2015).

    Article  CAS  Google Scholar 

  16. Um, H. J., Kim, M., Lee, S. H. & Kim, Y. H. Preventing the formation of positive transcription elongation factor b by human cyclin T1–binding RNA aptamer for anti–HIV transcription. AID. 26, 1599–1605 (2012).

    Article  CAS  Google Scholar 

  17. Sekhon, S. S. et al. Aptabody–aptatope interactions in aptablotting assays. Nanoscal. 9, 7464–7475 (2017).

    Article  CAS  Google Scholar 

  18. Sekhon, S. S. et al. Defining the copper binding aptamotif and aptamer integrated recovery platform (AIRP). Nanoscal. 9, 2883–2894 (2017).

    Article  CAS  Google Scholar 

  19. Sekhon, S. S. et al. Advances in pathogen–associated molecules detection using Aptamer based biosensors. Mol. Cell. Toxicol. 9, 311–317 (2013).

    Article  CAS  Google Scholar 

  20. Lee, S. H. et al. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens. Bioelectron. 68, 272–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Song, M. S. et al. Detecting and Discriminating Shigella sonnei Using an Aptamer–Based Fluorescent Biosensor Platform. Molecules 22, doi: 10.3390/molecules 22050825 (2017).

  22. Lee, K. A. et al. Aptamer–based Sandwich Assay and its Clinical Outlooks for Detecting Lipocalin–2 in Hepatocellular Carcinoma (HCC). Sci. Rep. 5, doi: 10.1038/ srep10897 (2015).

  23. Ruscito, A. & DeRosa, M. C. Small–molecule binding aptamers: Selection strategies, characterization, and applications. Front. Chem. 4, doi: 10.3389/fchem.2016. 00014 (2016).

  24. Cao, F. et al. In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Biosci. Biotechnol. Biochem. 80, 823–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen, V. T., Kwon, Y. S., Kim, J. H. & Gu, M. B. Multiple GO–SELEX for efficient screening of flexible aptamers. Chem. Comm. 50, 10513–10516 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Gopinath, S. C. B. Methods developed for SELEX. Anal. Bioanal. Chem. 387, 171–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Lang, Q., Han, L., Hou, C., Wang, F. & Liu, A. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talant. 156, 34–41 (2016).

    Article  CAS  Google Scholar 

  28. Hassani, S. et al. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol. 91, 109–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Arduini, F., Guidone, S., Amine, A., Palleschi, G. & Moscone, D. Acetylcholinesterase biosensor based on self–assembled monolayer–modified gold–screen printed electrodes for organophosphorus insecticide detection. Sens. Actuator B–Chem. 179, 201–208 (2013).

    Article  CAS  Google Scholar 

  30. Guo, L. et al. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine–starch color reaction. Anal. Chim. Act. 967, 59–63 (2017).

    Article  CAS  Google Scholar 

  31. Zhang, W., Asiri, A. M., Liu, D., Du, D. & Lin, Y. Nanomaterial–based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Anal. Chem. 54, 1–10 (2014).

    Article  CAS  Google Scholar 

  32. Nuo, D. U. A. N., Shi–Jia, W. U. & Zhou–Ping, W. A. N. G. An aptamer–based fluorescence assay for ochratoxin A. Chinese J. Anal. Chem. 39, 300–304 (2011).

    Article  Google Scholar 

  33. Chen, J., Fang, Z., Liu, J. & Zeng, L. A simple and rapid biosensor for ochratoxin A based on a structure–switching signaling aptamer. Food Contro. 25, 555–560 (2012).

    Article  CAS  Google Scholar 

  34. Luan, Y., Lu, A., Chen, J., Fu, H. & Xu, L. A Label–Free Aptamer–Based Fluorescent Assay for Cadmium Detection. Appl. Sci. 6, doi:10.3390/app6120432 (2016).

  35. Song, K. M. et al. Gold nanoparticle–based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem. 415, 175–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Barthelmebs, L., Jonca, J., Hayat, A., Prieto–Simon, B. & Marty, J. L. Enzyme–linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Contro. 22, 737–743 (2011).

    Article  CAS  Google Scholar 

  37. Jiang, Y., Tian, J., Hu, K., Zhao, Y. & Zhao, S. Sensitive aptamer–based fluorescence polarization assay for mercury (II) ions and cysteine using silver nanoparticles as a signal amplifier. Microchim. Act. 181, 1423–1430 (2014).

    Article  CAS  Google Scholar 

  38. Bonel, L., Vidal, J. C., Duato, P. & Castillo, J. R. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens. Bioelectron. 26, 3254–3259 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Lu, C., Tang, Z., Liu, C., Kang, L. & Sun, F. Magneticnanobead–based competitive enzyme–linked aptamer assay for the analysis of oxytetracycline in food. Anal. Bioanal. Chem. 407, 4155–4163 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Cruz–Aguado, J. A. & Penner, G. Determination of ochratoxin A with a DNA aptamer. J. Agric. Food Chem. 56, 10456–10461 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Mannironi, C., Di Nardo, A., Fruscoloni, P. & Tocchini–Valentini, G. P. In vitro selection of dopamine RNA ligands. Biochemistr. 36, 9726–9734 (1997).

    Article  CAS  Google Scholar 

  42. Kato, T., Takemura, T., Yano, K., Ikebukure, K. & Karube, I. In vitro selection of DNA aptamers which bind to cholic acid. Biochim. Biophys. Act. 1493, 12–18 (2000).

    Article  CAS  Google Scholar 

  43. Majerfeld, I., Puthenvedu, D. & Yarus, M. RNA affinity for molecular L–histidine; genetic code origins. J. Mol. Evol. 61, 226–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J. H., Yigit, M. V., Mazumdar, D. & Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer–nanomaterial conjugates. Adv. Drug Delivery Rev. 62, 592–605 (2010).

    Article  CAS  Google Scholar 

  45. Wang, P. et al. Aptamer–wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 59, 237–242 (2016).

    Article  CAS  Google Scholar 

  46. Bala, R. et al. Detection of organophosphorus pesticide— Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem. Eng. J. 311, 111–116 (2017).

    Article  CAS  Google Scholar 

  47. Dong, J. et al. Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Contro. 25, 543–549 (2012).

    Article  CAS  Google Scholar 

  48. Shrivastav, A. M., Usha, S. P. & Gupta, B. D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 79, 150–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, G. et al. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers–single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talant. 178, 1046–1052 (2018).

    Article  CAS  Google Scholar 

  50. Shi, H. et al. Selective and visible–light–driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes. Electrochem. Commun. 19, 111–114 (2012).

    Article  CAS  Google Scholar 

  51. Dou, X., Chu, X., Kong, W., Luo, J. & Yang, M. A goldbased nanobeacon probe for fluorescence sensing of organophosphorus pesticides. Anal. Chim. Act. 891, 291–297 (2015).

    Article  CAS  Google Scholar 

  52. Weerathunge, P., Ramanathan, R., Shukla, R., Sharma, T. K. & Bansal, V. Aptamer–controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 86, 11937–11941 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, C. et al. Organophosphorus pesticides detection using broad–specific single–stranded DNA based fluorescence polarization aptamer assay. Biosens. Bioelectron. 55, 216–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Li, W. A. N. G., Hua, Y. E., Hong–Qing, S. A. N. G. & Dan–Dan, W. A. N. G. Aptamer–based fluorescence assay for detection of Isocarbophos and Profenofos. Chinese J. Anal. Chem. 44, 799–803 (2016).

    Article  Google Scholar 

  55. Li, C., Zhang, G., Wu, S. & Zhang, Q. Aptamer–based microcantilever–array biosensor for profenofos detection. Anal. Chim. Act. 1020, 116–122 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Young Ahn or Yang-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhon, S.S., Park, GY., Park, DY. et al. Aptasensors for Pesticide Detection. Toxicol. Environ. Health Sci. 10, 229–236 (2018). https://doi.org/10.1007/s13530-018-0370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0370-4

Keywords

Navigation