Skip to main content
Log in

Lead and Cadmium Levels in Mussels and Fishes from Three Coastal Ecosystems of NW Mexico and Its Potential Risk due to Fish and Seafood Consumption

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the levels of cadmium and lead in edible tissue of Mytella charruana and Mugil curema from three coastal lagoons (Altata Ensenada del Pabellón, AEP; Urías, URI; and Teacapán, TEA) of Sinaloa (NW of Mexico) during an annual cycle, to compare maximum permissible levels (MPLs) of with legal limits of cadmium and lead, and to assess potential risk for consumers.

Methods

Samples of charry mussel (M. charruana) and white mullet (M. curema) were collected every two months between July 2005 and July 2006 in three of the main lagoon systems in the state of Sinaloa (NW Mexico): Altata-Ensenada del Pabellón (AEP), Urías (URI) and Teacapán (TEA), which represent different pollution.

Results

The range of mean levels in the studied lagoons were as follows: in M. charruana Cd 0.064 to 0.222 and Pb 0.206 to 0.482 μg g-1 ww, respectively and in M. curema Cd 0.003 to 0.018 and Pb 0.013 to 0.019 μg g-1 ww, respectively. Taking into account national and international regulations, the Cd and Pb levels detected in M. curema apparently do not pose a risk for human health. Nonetheless, for M. charruana the scenario is different, some levels of Cd in TEA surpassed maximum permissible levels (MPL’s) of European Commission (EC) and Codex regulations and on the other hand, Pb levels in AEP rather than URI surpassed MPLs of national and international regulations.

Conclusion

Although some levels exceed legal limits, risks for human health are diluted because EDI - of Cd and Pb - via consumption of edible tissue of fish were far below the provisional permissible tolerable daily intake (PTDI) values established by FAO/WHO. However, this situation is different if we taking into account, different patterns of consumption in mussels, few EDI values exceed the established levels of PTDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, W., Darnerud, P. O. & Petersson-Grawé, K. Risks and Benefits of Fish Consumption: A Risk-Benefit Analysis Based on the Occurrence of Dioxin/PCB, Methyl Mercury, n-3 Fatty Acids and Vitamin D in Fish, https://doi.org/www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2007/2007_12_risks_and_benefits_of_fish_consumption.pdf (2007).

    Google Scholar 

  2. World Health Organization & Food and Agriculture Organization of the United Nations. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption, http://www.fao.org/docrep/ 015/ba0136e/ba0136e00.htm (2011).

    Google Scholar 

  3. FAOSTAT (Food and Agriculture Organization of the United Nations). Food Supply -Livestock and fish equivalent. Online version, available in https://doi.org/fenixservices.fao.org/faostat/static/bulkdownloads/FoodSupply_LivestockFish_E_All_Data_(Normalized).zip (2017).

    Google Scholar 

  4. CONAPESCA (Comisión Nacional de Acuacultura y Pesca). Anuario Estadístico de Acuacultura y Pesca, https://doi.org/www.conapesca.gob.mx/work/sites/cona/dgppe/2014/anuario_estadistico_de_acuacultura_y_pesca_2014.pdf (2014).

    Google Scholar 

  5. Gutiérrez-Galindo, E. A., Villaescusa-Celaya, J. A. & Arreola-Chimal, A. Bioacumulación de metales en mejillones de cuatro sitios selectos de la región costera de Baja California. Cienc. Mar. 25, 557–578 (1999).

    Article  Google Scholar 

  6. Pereira-Santos, L. F., Sitonio-Trigueiro, I. N., Azevedo-Lemos, V., da Nóbrega-Furtunato, D. M. & Vieira-Cardoso, R. D. C. Assessment of cadmium and lead in commercially important seafood from São Francisco Do Conde, Bahia, Brazil. Food Control 33, 193–199 (2013).

    Article  CAS  Google Scholar 

  7. Alexander, D. E. in Encyclopedia of Environmental Science (eds Alexander, D. E. & Fairbridge, R. W.) 43–44 (Springer: Dordrecht, Netherlands, 1999).

  8. Frías-Espericueta, M. G. et al. The metal content of bivalve molluscs of a coastal lagoon of NW Mexico. B. Environ. Contam. Tox. 80, 90–92 (2008).

    Article  CAS  Google Scholar 

  9. Ruelas-Inzunza, J., Green-Ruiz, C., Zavala-Nevárez, M. & Soto-Jiménez, M. Biomonitoring of Cd, Cr, Hg and Pb in the Baluarte River basin associated to a mining area (NW Mexico). Sci. Total Environ. 409, 3527–3536 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. Mashroofeh, A., Bakhtiari, A. R., Pourkazemi, M. & Rasouli, S. Bioaccumulation of Cd, Pb and Zn in the edible and inedible tissues of three sturgeon species in the Iranian Coastline of the Caspian Sea. Chemosphere 90, 573–580 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Sneddon, J. & Thibodeaux, C. A. in Safety Analysis of Foods of Animal Origin (eds Nollet, L. M. L. & Toldrá, F) 641–661 (Taylor and Francis Group, LLC, Boca Raton, FL, 2011).

  12. Ersoy, B. & Çelik, M. Essential elements and contaminants in tissues of commercial pelagic fish from the Eastern Mediterranean Sea. J. Sci. Food Agric. 89, 1615–1621 (2009).

    Article  CAS  Google Scholar 

  13. ATSDR (Agency for Toxic Substances and Disease Registry). Priority List of Hazardous Substance, https://doi.org/www.atsdr.cdc.gov/spl/ (2011).

    Google Scholar 

  14. Wu, P., Li, C., Chen, J., Zheng, C. & Hou, X. Determination of cadmium in biological samples: an update from 2006 to 2011. Appl. Spectrosc. Rev. 47, 327–370 (2012).

    Article  CAS  Google Scholar 

  15. Moulis, J. M. & Thévenod, F. New perspectives in cadmium toxicity: an introduction. Biometals 23, 763–768 (2010).

    Article  PubMed  CAS  Google Scholar 

  16. Li, Y. et al. Cadmium accumulation and metallothionein biosynthesis in cadmium-treated freshwater mussel Anodonta woodiana. PLoS ONE 10, doi:10.1371/journal. pone.0117037 (2015).

  17. Pattee, O. H. & Pain, D. J. in Handbook of Ecotoxicology (eds Hoffman, D. J., Rattner, B. A., Burton, G. A. & Cairns, J.) 373–408 (CRC Press LLC, Boca Raton, FL, 2003).

  18. Zamora-Arellano, N. Y., Ruelas-Inzunza, J., García-Hernández, J., Ilizaliturri-Hernández, C. A. & Betancourt-Lozano, M. Linking fish consumption patterns and health risk assessment of mercury exposure in a coastal community of NW Mexico. Hum. Ecol. Risk Assess. 23, 1505–1521 (2017).

    Article  CAS  Google Scholar 

  19. Olmedo, P. et al. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ. Int. 59, 63–72 (2013).

    PubMed  CAS  Google Scholar 

  20. Aydin-Onen, S., Kucuksezgin, F., Kocak, F. & Açik, S. Assessment of heavy metal contamination in Hediste diversicolor (O.F. Müller, 1776), Mugil cephalus (Linnaeus, 1758), and surface sediments of Bafa Lake (Eastern Aegean). Environ. Sci. Pollut. Res. 22, 8702–8718 (2015).

    Article  CAS  Google Scholar 

  21. Coan, E. V. & Valentich-Scott, P. in Bivalve Seashells of Tropical West America: Marine Bivalve Mollusks from Baja California to Northern Peru 1st Edn (Santa Barbara Museum of Natural History Monograpfs 6, Studies in Biodiversity 4, 2012).

    Google Scholar 

  22. U.S. Environmental Protection Agency. SW-846 Test Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices, online version, available on: https://doi.org/www.epa.gov/sites/production/files/2015-12/documents/3052.pdf (1996).

    Google Scholar 

  23. Cadena-Cárdenas, L., Méndez-Rodríguez, L., Zenteno-Savín, T., García-Hernández, J. & Acosta-Vargas, B. Heavy metal levels in marine mollusks from areas with, or without, mining activities along the Gulf of California, Mexico. Arch. Environ. Con. Tox. 57, 96–102 (2009).

    Article  CAS  Google Scholar 

  24. Streit, B. in Fish Ecotoxicology (eds Braunbeck, T., Hinton, D. E. & Streit, B.) 353–387 (Birkhaeuser Verlag, Basel, Switzerland, 1998).

  25. World Health Organization & Food and Agriculture Organization of the United Nations. Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA 1956–2011), https://doi.org/apps.who.int/iris/bitstream/handle/10665/44515/WHO_TRS_960_eng.pdf;jsessionid=27C7FAA4C3C8ED3170077170025B 27A5?sequence=1 (2011).

    Google Scholar 

  26. Orisakwe, O. E., Nduka, J. K., Amadi, C. N., Dike, D. O. & Bede, O. Heavy metals health risk assessment for population via consumption of food crops and fruits in Owerri, South Eastern, Nigeria. Chem. Cent. J. 6, 77 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ruelas-Inzunza, J., Hernández-Osuna, J. & Páez-Osuna, F. Total and organic mercury in ten fish species for human consumption from the Mexican Pacific. B. Environ. Contam. Tox. 86, 679–683 (2011).

    Article  CAS  Google Scholar 

  28. Tirado-Escovar, D. Y. Mercurio en el pez dorado Corypfaena hippurus de la costa del sur de Sinaloa: distribución y transferencia trófica. Disertation, Universidad Autónoma de México [in spanish] (2013).

    Google Scholar 

  29. Osuna-López, J. I. et al. Cd, Pb and organochlorine pesticides of Mytella strigata (Pelecypoda: Mytilidae) of six coastal lagoons of NW Mexico. Bol. Invest. Mar. Cos. 38, 233–239 (2009).

    Google Scholar 

  30. Ruelas-Inzunza, J. & Páez-Osuna, F. Trophic distribution of Cd, Pb, and Zn in a food web from Altata-Ensenada del Pabellón Subtropical Lagoon, SE Gulf of California. Arch. Environ. Con. Tox. 54, 584–596 (2008).

    Article  CAS  Google Scholar 

  31. Szefer, P. et al. Distribution and association of trace metals in soft tissue and byssus of Mytella strigata and other benthal organisms from Mazatlan harbour, mangrove lagoon of the Northwest Coast of Mexico. Environ. Int. 24, 359–374 (1998).

    Article  CAS  Google Scholar 

  32. Ruelas-Inzunza, J. & Páez-Osuna, F. Comparative bioavailability of trace metals using three filter-feeder organisms in a subtropical coastal environment (Southeast Gulf of California). Environ. Pollut. 107, 437–444 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. Norma Oficial Mexicana 242 (NOM-242-SSA1-2009 Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba [in spanish] (2009).

    Google Scholar 

  34. Australia New Zealand Food Standards Code -Standard 1.4.1 -Contaminants and Natural Toxicants, https://doi.org/www.legislation.gov.au/Details/F2011C00542/473861a6-39bd-4401-9465-568d7e113af8 (2016).

  35. European Commission Regulation (EC) No.1881/2006 setting maximum levels for certain contaminants in foodstuffs, https://doi.org/eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32006R1881&from=EN (2006).

  36. CCFAC (Codex Committee on Food Additives and Contaminants). Report of the 32nd session of the Codex Committee on Food Additives and Contaminants: Joint FAO/WHO Food Standards Programme (Thirty-fourth Session), https://doi.org/www.fao.org/tempref/codex/Reports/Alinorm01/al01_12e.pdf (2001).

    Google Scholar 

  37. National Standard of the People’s Republic of China: National Food Safety Standard Maximum Levels of Contaminants in Food (GB 2762–2012), https://doi.org/www.seafish.org/media/publications/china_max_levels_of_contaminants_in_food.pdf (2013).

  38. Páez-Osuna, F. et al. Concentrations of selected trace metals (Cu, Pb, Zn), organochlorines (PCBs, HCB) and total PAHs in mangrove oysters from the pacific coast of Mexico: an overview. Mar. Pollut. Bull. 44, 1303–1308 (2002).

    Article  PubMed  Google Scholar 

  39. Gil-Manrique, B. et al. Cadmium and lead concentrations in hepatic and muscle tissue of demersal fish from three lagoon systems (SE Gulf of California). Environ. Sci. Pollut. Res. 24, 12927–12937 (2017).

    Article  CAS  Google Scholar 

  40. Ruelas-Inzunza, J., Páez-Osuna, F. & García-Flores, D. Essential (Cu) and nonessential (Cd and Pb) metals in ichthyofauna from the coasts of Sinaloa state (SE Gulf of California). Environ. Monit. Assess. 162, 251–263 (2010).

    Article  PubMed  CAS  Google Scholar 

  41. Frías-Espericueta, M. G. et al. Cadmium, copper, lead, and zinc in Mugil cephalus from seven coastal lagoons of NW Mexico. Environ. Monit. Assess. 182, 133–139 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Frías-Espericueta, M. G. et al. Metal contents of four commercial fish species of NW Mexico. B. Environ. Contam. Tox. 85, 334–338 (2010).

    Article  CAS  Google Scholar 

  43. EC (2008) European Commission Regulation (EC) No.629/2008 setting maximum levels for certain contaminants in foodstuffs, https://doi.org/www.fsai.ie/uploadedFiles/commission_regulation_ec_no_629_2008.pdf (2008).

  44. Codex Committee on Food Additives and Contaminants (CCFAC) (2001b) Codex Committee on Food Additives and Contaminants (CCFAC), 2001-Comments Submitted on the Draft Guideline Level and Proposed Draft Maximum Levels for Cadmium: Joint FAO/WHO Food Standards Programme (Thirty-third Session) CX/FAC 01/28, The Hague, The Netherlands, 12–16 March 2001.

  45. Priya, S. L. et al. Bioaccumulation of heavy metals in mullet (Mugil cephalus) and oyster (Crassostrea madrasensis) from Pulicat Lake, South East Coast of India. Toxicol. Ind. Health 27, 117–126 (2011).

    Article  CAS  Google Scholar 

  46. Páez-Osuna, F. & Osuna-Martínez, C. C. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast gulf of California using mangrove oyster (Crassostrea corteziensis and Crassostrea palmula). Arch. Environ. Con. Tox. 68, 305–316 (2015).

    Article  CAS  Google Scholar 

  47. Ruiz-Ramírez, S. et al. Aspectos reproductivos de la lisa Mugil curema (Mugiliformes: Mugilidae) en la laguna costera de Barra de Navidad, Jalisco, México. Lat. Am. J. Aquat. Res. 45, 443–456 (2017).

    Article  Google Scholar 

  48. García-Gasca, A. et al. The white mullet (Mugil curema) as biological indicator to assess environmental stress in tropical coastal lagoons. Environ. Monit. Assess. 188, 688–702 (2016).

    Article  PubMed  CAS  Google Scholar 

  49. Rajkumar, J. S. I., John-Milton, M. C. & Arockia-Rita, J. J. Bioaccumulation of some heavy metals Cd, Cu, Pb and Zn in Mugil cephalus, Perna viridis and Penaeus monodon. Int. J. Adv. Res. Biot. 1, 5–9 (2012).

    Google Scholar 

  50. Yi, Y., Yang, Z. & Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 159, 2575–2585 (2011).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Eugenia Martínez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astorga-Rodríguez, J.E., Martínez-Rodríguez, I.E., García-de la Parra, L.M. et al. Lead and Cadmium Levels in Mussels and Fishes from Three Coastal Ecosystems of NW Mexico and Its Potential Risk due to Fish and Seafood Consumption. Toxicol. Environ. Health Sci. 10, 203–211 (2018). https://doi.org/10.1007/s13530-018-0365-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0365-1

Keywords

Navigation