Skip to main content
Log in

Stress response in E. coli exposed to different pharmaceuticals

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

The hazardous effect of four widely consumed pharmaceuticals (caffeine, ibuprofen, aspirin and tetracycline) has been studied. Escherichia coli has been used as a comparison organism for the four stress responsive genes, grpE, recA, katG and fabA, which are useful biomarkers of the protein damage, DNA damage, oxidative damage and membrane damage caused by these pharmaceuticals, respectively. The growth rate has been found to depend upon the time of exposure and the concentration of pharmaceuticals. The expression levels of these four genes, quantified by semi-quantitative reverse transcription-PCR, show different responsive patterns when the E. coli cultures were under stressful conditions caused by exposure to these four pharmaceuticals in different concentrations. The stress responsive gene grpE is more sensitive to aspirin and tetracycline, recA is responsive to caffeine and aspirin, katG is responsive to ibuprofen only whereas fabA is responsive to tetracycline only. The extent of stress responsive effect caused by these pharmaceuticals has been analyzed and most responsive genes have been identified for each pharmaceutical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fent, K., Weston, A. A. & Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76, 122–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Mager, W. H. & De Kruijff, A. J. Stress-induced transcriptional activation. Microbiol. Rev. 59, 506–531 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Simmons, P. T. & Portier, C. J. Toxicogenomics: the new frontier in risk analysis. Carcinogenesis 23, 903–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Bromberg, R., George, S. M. & Peck, M. W. Oxygen sensitivity of heated cells of Escherichia coli O157:H7. J. Appl. Microbiol. 85, 231–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, W. W. et al. Pharmacological studies on the anxiolytic effect of standardized Schisandra lignans extract on restraint-stressed mice. Phytomedicine 18, 1144–1147 (2011).

    Article  PubMed  Google Scholar 

  6. Hayashi, Y., Heckmann, L. H., Callaghan, A. & Sibly, R. M. Reproduction recovery of the crustacean Daphnia magna after chronic exposure to ibuprofen. Ecotoxicology 17, 246–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Pomati, F., Netting, A. G., Calamari, D. & Neilan, B. A. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat. Toxicol. 67, 387–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Wandt, G., Kubis, S. & Quinones, A. Treatment with DNA-damaging agents increases expression of polA″lacZ gene fusions in Escherichia coli K-12. Mol. Gen. Genet. 254, 98–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Olive, P. L., Banath, J. P. & Durand, R. E. Detection of subpopulations resistant to DNA-damaging agents in spheroids and murine tumours. Mutat. Res. 375, 157–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, W. & Saint, D. A. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302, 52–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Pobiega, M. et al. Molecular characterization and drug resistance of Escherichia coli strains isolated from urine from long-term care facility residents in Cracow, Poland. Med. Sci. Monit. 19, 317–326 (2013).

    Article  Google Scholar 

  12. Castellar, M. R., Canovas, M., Kleber, H. P. & Iborra, J. L. Biotransformation of D(+)-carnitine into L(-)-carnitine by resting cells of Escherichia coli O44 K74. J. Appl. Microbiol. 85, 883–890 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Pabalan, N., Singian, E., Jarjanazi, H. & Steiner, T. S. Enteroaggregative Escherichia coli and acute diarrhea in children: a meta-analysis of South Asian populations. Eur. J. Clin. Microbiol. Infect. Dis. 32, 597–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Ramos, H. J., Souza, E. M., Soares-Ramos, J. R. & Pedrosa, F. O. Antibiosis by Bacillus amyloliquefaciens ribonuclease barnase expressed in Escherichia coli against symbiotic and endophytic nitrogen-fixing bacteria. J. Biotechnol. 126, 291–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, L. W., Chen, P. H. & Hsu, C. M. Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock 36, 67–75 (2011).

    Article  PubMed  Google Scholar 

  16. Parolini, M., Pedriali, A. & Binelli, A. Application of a biomarker response index for ranking the toxicity of five pharmaceutical and personal care products (PPCPs) to the bivalve Dreissena polymorpha. Arch. Environ. Contam. Toxicol. 64, 439–447 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, J. & Levin, R. E. Influence of caffeine on the induction of SOS functions recA and umuC by mitomycin C in Escherichia coli. Microbios 64, 185–195 (1990).

    CAS  PubMed  Google Scholar 

  18. Sandlie, I., Solberg, K. & Kleppe, K. The effect of caffeine on cell growth and metabolism of thymidine in Escherichia coli. Mutat. Res. 73, 29–41 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, C., Lin, S. Y., Chi, W. T. & Charng, Y. Y. Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiol. 158, 747–758 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mohanty, S. K. et al. Delineation of the caffeine C-8 oxidation pathway in Pseudomonas sp. strain CBB1 via characterization of a new trimethyluric acid monooxygenase and genes involved in trimethyluric acid metabolism. J. Bacteriol. 194, 3872–3882 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Belkin, S., Smulski, D. R., Vollmer, A. C., Van Dyk, T. K. & LaRossa, R. A. Oxidative stress detection with Escherichia coli harboring a katG::lux fusion. Appl. Environ. Microbiol. 62, 2252–2256 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Roediger, W. E. & Millard, S. Selective inhibition of fatty acid oxidation in colonocytes by ibuprofen: a cause of colitis? Gut 36, 55–59 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jurivich, D. A., Sistonen, L., Kroes, R. A. & Morimoto, R. I. Effect of sodium salicylate on the human heat shock response. Science 255, 1243–1245 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Feng, Y. & Cronan, J. E. Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J. Biol. Chem. 284, 29526–29535 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiho Min or Yang-Hoon Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, NH., Sekhon, S.S., Ahn, JY. et al. Stress response in E. coli exposed to different pharmaceuticals. Toxicol. Environ. Health Sci. 6, 106–112 (2014). https://doi.org/10.1007/s13530-014-0194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-014-0194-9

Keywords

Navigation