Skip to main content

Advertisement

Log in

DNA hypomethylation patterns and their impact on the tumor microenvironment in colorectal cancer

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Recent research underscores the pivotal role of immune checkpoints as biomarkers in colorectal cancer (CRC) therapy, highlighting the dynamics of resistance and response to immune checkpoint inhibitors. The impact of epigenetic alterations in CRC, particularly in relation to immune therapy resistance, is not fully understood.

Methods

We integrated a comprehensive dataset encompassing TCGA-COAD, TCGA-READ, and multiple GEO series (GSE14333, GSE37892, GSE41258), along with key epigenetic datasets (TCGA-COAD, TCGA-READ, GSE77718). Hierarchical clustering, based on Euclidean distance and Ward's method, was applied to 330 primary tumor samples to identify distinct clusters. The immune microenvironment was assessed using MCPcounter. Machine learning algorithms were employed to predict DNA methylation patterns and their functional enrichment, in addition to transcriptome expression analysis. Genomic mutation profiles and treatment response assessments were also conducted.

Results

Our analysis delineated a specific tumor cluster with CpG Island (CGI) methylation, termed the Demethylated Phenotype (DMP). DMP was associated with metabolic pathways such as oxidative phosphorylation, implicating increased ATP production efficiency in mitochondria, which contributes to tumor aggressiveness. Furthermore, DMP showed activation of the Myc target pathway, known for tumor immune suppression, and exhibited downregulation in key immune-related pathways, suggesting a tumor microenvironment characterized by diminished immunity and increased fibroblast infiltration. Six potential therapeutic agents—lapatinib, RDEA119, WH.4.023, MG.132, PD.0325901, and AZ628—were identified as effective for the DMP subtype.

Conclusion

This study unveils a novel epigenetic phenotype in CRC linked to resistance against immune checkpoint inhibitors, presenting a significant step toward personalized medicine by suggesting epigenetic classifications as a means to identify ideal candidates for immunotherapy in CRC. Our findings also highlight potential therapeutic agents for the DMP subtype, offering new avenues for tailored CRC treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

References

  1. H. Brenner, M. Kloor, C.P. Pox, Colorectal cancer. Lancet 383(9927), 1490–1502 (2014)

    Article  PubMed  Google Scholar 

  2. B. Duan, Y. Zhao, J. Bai, J. Wang, X. Duan, X. Luo, et al., Colorectal cancer: an overview, In: Gastrointestinal Cancers, ed. J.A. Morgado-Diaz (Exon Publications, Brisbane (AU), 2022). Copyright: The Authors.; The authors confirm that the materials included in this chapter do not violate copyright laws. Where relevant, appropriate permissions have been obtained from the original copyright holder(s), and all original sources have been appropriately acknowledged or referenced

    Google Scholar 

  3. R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023. CA Cancer J. Clin. 73(1), 17–48 (2023)

    Article  PubMed  Google Scholar 

  4. N.A. Johdi, N.F. Sukor, Colorectal Cancer Immunotherapy: options and Strategies. Front. Immunol. 11, 1624 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Marcuello, V. Vymetalkova, R.P.L. Neves, S. Duran-Sanchon, H.M. Vedeld, E. Tham, et al, Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Aspect. Med. 69, 107–122 (2019)

    Article  CAS  Google Scholar 

  6. H. Hampel, M.F. Kalady, R. Pearlman, P.P. Stanich, Hereditary Colorectal Cancer. Hematol./Oncol. Clin. N. Am. 36(3), 429–447 (2022)

    Article  Google Scholar 

  7. S. Sakata, D.W. Larson, Targeted Therapy for Colorectal Cancer. Surg. Oncol. Clin. N. Am. 31(2), 255–264 (2022)

    Article  PubMed  Google Scholar 

  8. A.L. Mattei, N. Bailly, A. Meissner, DNA methylation: a historical perspective. Trends Genet. 38(7), 676–707 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. L.D. Moore, T. Le, G. Fan, DNA methylation and its basic function. Neuropsychopharmacol. 38(1), 23–38 (2013)

    Article  CAS  Google Scholar 

  10. M. Klutstein, D. Nejman, R. Greenfield, H. Cedar, DNA Methylation in Cancer and Aging. Cancer Res. 76(12), 3446–3450 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. G. Jung, E. Hernández-Illán, L. Moreira, F. Balaguer, A. Goel, Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17(2), 111–130 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  12. D. Müller, B. Győrffy, DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim. Biophys. Acta Rev. Cancer 1877(3), 188722 (2022)

    Article  PubMed  Google Scholar 

  13. B. Dariya, S. Aliya, N. Merchant, A. Alam, G.P. Nagaraju, Colorectal Cancer Biology, Diagnosis, and Therapeutic Approaches. Crit. Rev. Oncogenesis 25(2), 71–94 (2020)

    Article  PubMed  Google Scholar 

  14. V. Vymetalkova, P. Vodicka, S. Vodenkova, S. Alonso, R. Schneider-Stock, DNA methylation and chromatin modifiers in colorectal cancer. Mol. Aspect. Med. 69, 73–92 (2019)

    Article  CAS  Google Scholar 

  15. K. Cervena, A. Siskova, T. Buchler, P. Vodicka, V. Vymetalkova, Methylation-Based Therapies for Colorectal Cancer. Cells 9(6) (2020)

  16. A.M. Jubb, S.M. Bell, P. Quirke, Methylation and colorectal cancer. J. Pathol. 195(1), 111–134 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. A. Gutierrez, H. Demond, P. Brebi, C.G. Ili, Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 11(11) (2021)

  18. V.A. Ionescu, G. Gheorghe, N. Bacalbasa, A.L. Chiotoroiu, C. Diaconu, Colorectal Cancer: from Risk Factors to Oncogenesis. Medicina (Kaunas, Lithuania) 59(9) (2023)

  19. V.V. Lao, W.M. Grady, Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 8(12), 686–700 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Chen, X. Zheng, C. Wu, The Role of the Tumor Microenvironment and Treatment Strategies in Colorectal Cancer. Front. Immunol. 12, 792691 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. C.R. Lichtenstern, R.K. Ngu, S. Shalapour, M. Karin, Immunotherapy, Inflammation and Colorectal Cancer. Cells 9(3) (2020)

  22. M.A. Senchukova, Genetic heterogeneity of colorectal cancer and the microbiome. World J. Gastrointestinal Oncol. 15(3), 443–463 (2023)

    Article  Google Scholar 

  23. Y. Xi, P. Xu, Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 14(10), 101174 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  24. M.W. Dougherty, C. Jobin, Intestinal bacteria and colorectal cancer: etiology and treatment. Gut. Microbes. 15(1), 2185028 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  25. G. Zhu, L. Pei, H. Xia, Q. Tang, F. Bi, Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer 20(1), 143 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  26. G. Rosati, G. Aprile, A. Colombo, S. Cordio, M. Giampaglia, A. Cappetta, et al., Colorectal Cancer Heterogeneity and the Impact on Precision Medicine and Therapy Efficacy. Biomedicines. 10(5) (2022)

  27. J. Liu, P. Chen, J. Zhou, H. Li, Z. Pan, Prognostic impact of lactylation-associated gene modifications in clear cell renal cell carcinoma: insights into molecular landscape and therapeutic opportunities. Environ. Toxicol. n/a(n/a)

  28. H. Li, L. Zhou, W. Zhou, X. Zhang, J. Shang, X. Feng, et al., Decoding the mitochondrial connection: development and validation of biomarkers for classifying and treating systemic lupus erythematosus through bioinformatics and machine learning. BMC Rheumatol. 7(1), 44 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  29. T. McInnes, D. Zou, D.S. Rao, F.M. Munro, V.L. Phillips, J.L. McCall, et al., Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer. BMC Cancer 17(1), 228 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  30. R.N. Jorissen, P. Gibbs, M. Christie, S. Prakash, L. Lipton, J. Desai, et al., Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer. Clin Cancer Res 15(24), 7642–7651 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Laibe, A. Lagarde, A. Ferrari, G. Monges, D. Birnbaum, S. Olschwang, A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III. OMICS 16(10), 560–565 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. M.L. Martin, Z. Zeng, M. Adileh, A. Jacobo, C. Li, E. Vakiani, et al., Logarithmic expansion of LGR5(+) cells in human colorectal cancer. Cell. Signal. 42, 97–105 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. W.E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England) 8(1), 118–127 (2007)

    Article  PubMed  Google Scholar 

  34. Y. Tian, T.J. Morris, A.P. Webster, Z. Yang, S. Beck, A. Feber, et al., ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics (Oxford, England) 33(24), 3982–3984 (2017)

    CAS  PubMed  Google Scholar 

  35. W. Zhou, P.W. Laird, H. Shen, Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 45(4), e22 (2017)

    PubMed  Google Scholar 

  36. A.D. Kelly, J. Madzo, P. Madireddi, P. Kropf, C.R. Good, J. Jelinek, et al., Demethylator phenotypes in acute myeloid leukemia. Leukemia 32(10), 2178–2188 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. P. Du, X. Zhang, C.C. Huang, N. Jafari, W.A. Kibbe, L. Hou, et al., Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinf. 11, 587 (2010)

    Article  CAS  Google Scholar 

  38. K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia, et al., Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013)

    Article  PubMed  Google Scholar 

  39. J. Jeschke, M. Bizet, C. Desmedt, E. Calonne, S. Dedeurwaerder, S. Garaud, et al., DNA methylation-based immune response signature improves patient diagnosis in multiple cancers. J. Clin. Invest. 127(8), 3090–3102 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  40. B. Phipson, J. Maksimovic, A. Oshlack, missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics (Oxford, England) 32(2), 286–288 (2016)

    CAS  PubMed  Google Scholar 

  41. A. Liberzon, C. Birger, H. Thorvaldsdóttir, M. Ghandi, J.P. Mesirov, P. Tamayo, The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1(6), 417–425 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  43. T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, et al., clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass)) 2(3), 100141 (2021)

    CAS  Google Scholar 

  44. Z. Xie, A. Bailey, M.V. Kuleshov, D.J.B. Clarke, J.E. Evangelista, S.L. Jenkins, et al., Gene Set Knowledge Discovery with Enrichr. Curr. Protocols 1(3), e90 (2021)

    Article  CAS  Google Scholar 

  45. X. Lu, J. Meng, Y. Zhou, L. Jiang, F. Yan, MOVICS: an R package for multi-omics integration and visualization in cancer subtyping. Bioinformatics (Oxford, England) (2020)

  46. A. Mayakonda, D.C. Lin, Y. Assenov, C. Plass, H.P. Koeffler, Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28(11), 1747–1756 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C.H. Mermel, S.E. Schumacher, B. Hill, M.L. Meyerson, R. Beroukhim, G. Getz, GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12(4), R41 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  48. A.G. Robertson, J. Kim, H. Al-Ahmadie, J. Bellmunt, G. Guo, A.D. Cherniack, et al., Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 171(3), 540–56.e25 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. X. Lu, J. Meng, L. Su, L. Jiang, H. Wang, J. Zhu, et al., Multi-omics consensus ensemble refines the classification of muscle-invasive bladder cancer with stratified prognosis, tumour microenvironment and distinct sensitivity to frontline therapies. Clin. Transl. Med. 11(12), e601 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. P. Geeleher, N.J. Cox, R.S. Huang, Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 15(3), R47 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  51. X. Lu, L. Jiang, L. Zhang, Y. Zhu, W. Hu, J. Wang, et al., Immune Signature-Based Subtypes of Cervical Squamous Cell Carcinoma Tightly Associated with Human Papillomavirus Type 16 Expression, Molecular Features, and Clinical Outcome. Neoplasia 21(6), 591–601 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. N. McGranahan, A.J. Furness, R. Rosenthal, S. Ramskov, R. Lyngaa, S.K. Saini, et al., Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280), 1463–1469 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. G.P. Wagner, K. Kin, V.J. Lynch, Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci (Theorie in den Biowissenschaften) 131(4), 281–285 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. W. Timp, H.C. Bravo, O.G. McDonald, M. Goggins, C. Umbricht, M. Zeiger, et al., Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med. 6(8), 61 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  55. A. Puccini, H.J. Lenz, J.L. Marshall, D. Arguello, D. Raghavan, W.M. Korn, et al., Impact of Patient Age on Molecular Alterations of Left-Sided Colorectal Tumors. Oncologist 24(3), 319–326 (2019)

    Article  CAS  PubMed  Google Scholar 

  56. Q. Li, Q. Lai, C. He, Y. Fang, Q. Yan, Y. Zhang, et al., RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J. Exp. Clin. Cancer Res. 38(1), 334 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by Medical Products Administration of Guangdong Province (2021YDZ03), the Science and Technology Research Project of Hebei Higher Education Institutions (QN2021012), the National Natural Science Foundation of China (81902498, H2022405002), Hubei Provincial Natural Science Foundation (2019CFB177), Natural Science Foundation of Hubei Provincial Department of Education (Q20182105), Chen Xiao-ping Foundation for the development of science and technology of Hubei Provincial (CXPJJH11800001-2018333), The Foundation of Health and Family planning Commission of Hubei Province (WJ2021Q007), Innovation and entrepreneurship training program (201810929005, 201810929009, 201810929068, 201813249010, S201910929009, S201910929045, S202013249005, S202013249008 and 202010929009) and The Scientific and Technological Project of Taihe hospital (2021JJXM009).

Author information

Authors and Affiliations

Authors

Contributions

C.K., F.Y., and R.H. contributed to the study design and critical revision of the manuscript. H.H., Q.L., X.T., Y.Z., D.Y., and L.M. carried out the study and drafted the manuscript. H.H., Q.L., X.T., Y.Z., D.Y., L.M., Y.G., K.W., and G.Z. analyzed the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ruiqin Han, Fangdie Ye or Chunlian Ke.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

None declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Li, Q., Tu, X. et al. DNA hypomethylation patterns and their impact on the tumor microenvironment in colorectal cancer. Cell Oncol. (2024). https://doi.org/10.1007/s13402-024-00933-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-024-00933-x

Keywords

Navigation