Skip to main content

Advertisement

Log in

Treatment of LS174T colorectal cancer stem-like cells with n-3 PUFAs induces growth suppression through inhibition of survivin expression and induction of caspase-3 activation

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer stem cells (CCSCs) are thought to contribute to tumor initiation, progression, metastasis, chemo-resistance and therapy failure. Therefore, assessment of the effectiveness of agents with anti-proliferative activities against CCSCs is warranted. Several studies have shown that different tumorigenic steps, ranging from initiation to metastasis, can be affected by n-3 polyunsaturated fatty acids (PUFAs). Here, we evaluated the effects of the PUFA components docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), alone or in combination, on LS174T cells that serve as a model for colorectal cancer initiating cells with stem cell-like properties.

Methods

LS174T cells were treated with 50, 100 and 150 μM DHA and EPA, or equal mixtures of DHA/EPA (i.e., 25/25, 50/50 and 75/75 μM), after which cell number, viability, growth inhibition, survivin expression, caspase-3 activation and apoptotic rate were evaluated.

Results

We found that treatment of LS174T cells with increasing PUFA concentrations significantly increased growth inhibition in a dose- and time-dependent manner. After a 72 h treatment with 150 μM DHA and EPA, or their combination (75/75 μM), growth rates were inhibited by 80.3 ± 5.5 %, 79.3 ± 5 % and 71.1 ± 1 %, respectively, compared to untreated cells. We also found that treatment for 48 h with 100 μM DHA and EPA, or their combination (50/50 μM), resulted in 2.9-, 3- and 2.6-fold increases in caspase-3 activation, as well as 54, 62.4 and 100 % decreases in survivin mRNA expression levels, respectively, compared to untreated cells. Low survivin mRNA levels combined with high caspase-3 activity levels were found to correlate with a higher growth inhibition in PUFA-treated cells. DHA appears to be a more potent growth inhibitor than EPA and the DHA/EPA combination. An increase in the number of apoptotic cells (early + late), ranging from 12.9 to 44.7 %, was observed with increasing DHA doses.

Conclusion

From our data we conclude that PUFAs induce growth inhibition via targeting survivin expression in LS174T cells, which serve as a model for CCSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Siegel, C. Desantis, A. Jemal, Colorectal cancer statistics. CA Cancer J. Clin. 64, 104–117 (2014)

    Article  PubMed  Google Scholar 

  2. T. Cačev, G. Aralica, B. Lončar, S. Kapitanović, Loss of NF2/Merlin expression in advanced sporadic colorectal cancer. Cell. Oncol. 37, 69–77 (2014)

    Article  Google Scholar 

  3. B.J. Wilson, T. Schatton, M.H. Frank, N.Y. Frank, Colorectal cancer stem cells: biology and therapeutic implications. Curr. Colorectal Cancer Rep. 7, 128–135 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  4. K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martínez-Ruiz, V. Maldonado, NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell. Oncol. 38, 327–339 (2015)

    Article  CAS  Google Scholar 

  5. V. Sulzyc-Bielicka, P. Domagala, D. Bielicki, K. Safranow, W. Domagala, Thymidylate synthase expression and p21 (WAF1)/p53 phenotype of colon cancers identify patients who may benefit from 5-fluorouracil based therapy. Cell. Oncol. 37, 17–28 (2014)

    Article  CAS  Google Scholar 

  6. M.N. Hall, J.E. Chavarro, I.M. Lee, W.C. Willett, J. Ma, A 22-year prospective study of fish, n-3 fatty acid intake, and colorectal cancer risk in men. Cancer Epidemiol. Biomarkers Prev. 17, 1136–1143 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. N. Habermann, B. Christian, B. Luckas, B.L. Pool-Zobel, E.K. Lund, M. Glei, Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state. Biofactors 35, 460–467 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. M. Anti, G. Marra, F. Armelao, G.M. Bartoli, R. Ficarelli, A. Percesepe, I. De Vitis, G. Maria, L. Sofo, G.L. Rapaccini, N. Gentiloni, E. Piccioni, G. Miggiano, Effect of omega-3 fatty acids on rectal mucosal cell proliferation in subjects at risk for colon cancer. Gastroenterology 103, 883–891 (1992)

    CAS  PubMed  Google Scholar 

  9. M. Anti, F. Armelao, G. Giancarlo Marra, A. Percesepe, G.M. Bartoli, P. Palozza, P. Parrella, C. Cantelta, N. Gentiloni, I.D. Vitis, G. Gasbarri, Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterology 107, 1709–1718 (1994)

    CAS  PubMed  Google Scholar 

  10. G. Calviello, F. Nicuolo, S. Gragnoli, E. Piccioni, S. Serini, N. Maggiano, G. Tringali, P. Navarra, F.O. Ranelletti, P. Palozza, n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and −2 and HIF-1 alpha induction pathway. Carcinogenesis 25, 2303–2310 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. B.A. Narayanan, N.K. Narayanan, D. Desai, B. Pittman, B.S. Reddy, Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis (methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and beta-catenin pathways in colon cancer cells. Carcinogenesis 25, 2443–2449 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. J. Hofmanová, A. Vaculová, A. Kozubík, Polyunsaturated fatty acids sensitize human colon adenocarcinoma HT-29 cells to death receptor-mediated apoptosis. Cancer Lett. 218, 33–41 (2005)

    Article  PubMed  Google Scholar 

  13. C.Y. Kuan, T.H. Walker, P.G. Luo, C.F. Chen, Long-chain polyunsaturated fatty acids promote paclitaxel cytotoxicity via inhibition of the MDR1 gene in the human colon cancer Caco-2 cell line. J. Am. Coll. Nutr. 30, 265–273 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. B. Wen, E. Deutsch, P. Opolon, A. Auperin, V. Frascogna, E. Connault, J. Bourhis, n-3 polyunsaturated fatty acids decrease mucosal/epidermal reactions and enhance antitumour effect of ionising radiation with inhibition of tumour angiogenesis. Br. J. Cancer 89, 1102–1107 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. T. Kato, N. Kolenic, R.S. Pardini, Docosahexaenoic acid (DHA), a primary tumor suppressive omega-3 fatty acid, inhibits growth of colorectal cancer independent of p53 mutational status. Nutr. Cancer 58, 178–187 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. D.P. Rose, J.M. Connolly, C.L. Meschter, Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. J. Natl. Cancer Inst. 83, 1491–1495 (1991)

    Article  CAS  PubMed  Google Scholar 

  17. T. Kato, R.L. Hancock, H. Mohammadpour, B. McGregor, P. Manalo, S. Khaiboullina, M.R. Hall, L. Pardini, R.S. Pardini, Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett. 187, 169–177 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. U.P. Kelavkar, J. Hutzley, R. Dhir, P. Kim, K.G. Allen, K. McHugh, Prostate tumor growth and recurrence can be modulated by the omega-6:omega-3 ratio in diet: athymic mouse xenograft model simulating radical prostatectomy. Neoplasia 8, 112–124 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. P. Astorg, Dietary N-6 and N-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes Control 15, 367–386 (2004)

    Article  PubMed  Google Scholar 

  20. B.A. Narayanan, N.K. Narayanan, B.S. Reddy, Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int. J. Oncol. 119, 1255–1262 (2001)

    Google Scholar 

  21. H. Chamras, A. Ardashian, D. Heber, J.A. Glaspy, Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation. J. Nutr. Biochem. 13, 711–716 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. T. Yamagami, C.D. Porada, R.S. Pardini, E.D. Zanjani, G. Almeida-Porada, Docosahexaenoic acid induces dose dependent cell death in an early undifferentiated subtype of acute myeloid leukemia cell line. Cancer Biol. Ther. 8, 331–337 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. P. Gazzaniga, A. Gradilone, A. Petracca, C. Nicolazzo, C. Raimondi, R. Iacovelli, G. Naso, E. Cortesi, Molecular markers in circulating tumour cells from metastatic colorectal cancer patients. J. Cell. Mol. Med. 14, 2073–2077 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. A.I. Sarela, R.C. Macadam, S.M. Farmery, A.F. Markham, P.J. Guillou, Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46, 645–650 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. P. Habbel, K.H. Weylandt, K. Lichopoj, J. Nowak, M. Purschke, J.D. Wang, C.W. He, D.C. Baumgart, J.X. Kang, Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells. World J. Gastroenterol. 15, 1079–1084 (2009)

  26. A. Kreso, P.V. Galen, N.M. Pedley, E. Lima-Fernandes, C. Frelin, T. Davis, L. Cao, R. Baiazitov, W. Du, N. Sydorenko, Y.C. Moon, L. Gibson, T. Wang, C. Leung, N.N. Iscove, C.H. Arrowsmith, E. Szentgyorgyi, S. Gallinger, J.E. Dick, C.A. O’Brien, Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29–36 (2013)

    Article  PubMed  Google Scholar 

  27. S.L. Volchenboum, C. Li, S. Li, E.F. Attiyeh, C.P. Reynolds, J.M. Maris, A.T. Look, R.E. George, Comparison of primary neuroblastoma tumors and derivative early-passage cell lines using genome-wide single nucleotide polymorphism array analysis. Cancer Res. 69, 4143–4149 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. E.J. Douglas, H. Fiegler, A. Rowan, S. Halford, D.C. Bicknell, W. Bodmer, I.P. Tomlinson, N.P. Carter, Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res. 64, 4817–4825 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. J.K. Willson, G.N. Bittner, T.D. Oberley, L.F. Meisner, J.L. Weese, Cell culture of human colon adenomas and carcinomas. Cancer Res. 47, 2704–2713 (1987)

    CAS  PubMed  Google Scholar 

  30. T. Yang, S. Fang, H.X. Zhang, L.X. Xu, Z.Q. Zhang, K.T. Yuan, C.L. Xue, H.L. Yu, S. Zhang, Y.F. Li, H.P. Shi, Y. Zhang, N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J. Nutr. Biochem. 24, 744–753 (2013)

  31. G. Calviello, F. Resci, S. Serini, E. Piccioni, A. Toesca, A. Boninsegna, G. Monego, F.O. Ranelletti, P. Palozza, Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 28, 1202–1209 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. D.C. Altieri, Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer 3, 46–54 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. F. Li, F.X. Ling, Survivin study: an update of “what is the next wave”? J. Cell. Physiol. 208, 476–486 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. M. Pennati, M. Folini, N. Zaffaroni, Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28, 1133–1139 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. H. Yamamoto, C.Y. Ngan, M. Monden, Cancer cells survive with survivin. Cancer Sci. 99, 1709–1714 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. P.J. Morin, A.B. Sparks, V. Korinek, N. Barker, H. Clevers, B. Vogelstein, K.W. Kinzler, Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790 (1997)

    Article  CAS  PubMed  Google Scholar 

  37. R. Rosin-Arbesfeld, A. Cliffe, T. Brabletz, M. Bienz, Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J. 22, 1101–1113 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. P.J. Kim, J. Plescia, H. Clevers, E.R. Fearon, D.C. Altieri, Survivin and molecular pathogenesis of colorectal cancer. Lancet 362, 205–209 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. A.B. Di Stefano, F. Iovino, Y. Lombardo, V. Eterno, T. Höger, F. Dieli, G. Stassi, M. Todaro, Survivin is regulated by interleukin-4 in colon cancer stem cells. J. Cell. Physiol. 225, 555–561 (2010)

    Article  PubMed  Google Scholar 

  40. V. Catalano, M. Gaggianesi, V. Spina, F. Iovino, F. Dieli, G. Stassi, M. Todaro, Colorectal cancer stem cells and cell death. Cancers (Basel) 3, 1929–1946 (2011)

  41. L.J. Lin, C.Q. Zheng, Y. Jin, Y. Ma, W.G. Jiang, T. Ma, Expression of survivin protein in human colorectal carcinogenesis. World J. Gastroenterol. 9, 974–977 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their great appreciation for the financial support received for this work from the Urmia University, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Sam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, M.R., Ahangar, P., Nejati, V. et al. Treatment of LS174T colorectal cancer stem-like cells with n-3 PUFAs induces growth suppression through inhibition of survivin expression and induction of caspase-3 activation. Cell Oncol. 39, 69–77 (2016). https://doi.org/10.1007/s13402-015-0254-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-015-0254-4

Keywords

Navigation