Skip to main content
Log in

Green active films/coatings based on seafood by-products (chitosan and gelatin): a powerful tool in food packaging

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Waste from the fishing and seafood industries has become a global problem and has increased over the past decade. Waste from the fish and seafood industry mainly refers to the waste and by-products resulting from the processing and storage of fish and marine-based products, resulting in the generation of a large volume of such waste. Many components of basic interest, such as chitosan and gelatin, are often contained in this waste and can be utilized in a multitude of applications, including food packaging. Chitosan and gelatin as natural polymers exhibit excellent characteristics such as edibility, degradability, and film-forming properties and are interesting biomaterials for the development of edible packaging in the food industry. In this review, the main methods of producing green active films/coatings from chitosan and gelatin are examined. The most commonly used method is casting, along with electrospinning and thermoplastic method. The characteristics of the films/coatings resulting from these materials are also analyzed with main emphasis on the characteristics related to the improvement and/or maintenance of food quality, such as mechanical characteristics, barrier characteristics, and optical characteristics. Applications of food packaging from chitosan and gelatin as innovative strategies in the field of biodegradable materials and biopolymers are additionally described. The aim of this review is to highlight the newly developed chitosan/gelatin composite film as an emerging and novel tool in food packaging and the opportunity to substitute the synthetic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Antioxidant activity

AKEO:

Apricot kernel essential oil

CH:

Chitosan

CH-MBE:

Chitosan-maqui berry extract

ΔE :

Color difference

DDGS:

Distiller dried grains with solubles

DHA:

Docosahexaenoic acid

G:

Gelatin

EPA:

Eicosapentaenoic acid

EAB:

Elongation at break

EOs:

Essential oils

EGCG:

Epigallocatechin gallate

EVOH:

Ethylene vinyl alcohol

EC:

European Commission

FG:

Fish gelatin

FAO:

Food and Agriculture Organization of the United Nations

G:

Gelatin

GRAS:

Generally recognized as safe

GVCA:

Global value chain analysis

GTE:

Green tea extract

HNTs:

ΗAlloysite nanotubes

LCA:

Life cycle assessment

L*:

Lightness

LFE:

Lycium barbarum Fruit extract

MBE:

Maqui berry extracts

PHAs:

Polyhydroxyalkanoates

PLA:

Polylactic acid

PVDC:

Polyvinylidene dichloride

a*:

Redness/greenness

RH:

Relative humidity

S/F/G:

Starch/furcellaran/gelatin

TEO:

Tea tree essential oils

TS:

Tensile strength

FDA:

United States Food and Drug Administration

WVP:

Water vapor permeability

WHO:

World Health Organization

b*:

Yellowness/blueness

References

  1. de la Caba K, Guerrero P, Trung TS, Cruz-Romero M, Kerry JP, Fluhr J, Maurer M, Kruijssen F, Albalat A, Bunting S, Burt S, Little D, Newton R (2019) From seafood waste to active seafood packaging: an emerging opportunity of the circular economy. J Clean Prod 208:86–98. https://doi.org/10.1016/j.jclepro.2018.09.164

    Article  Google Scholar 

  2. Genovese A, Acquaye AA, Figueroa A, Koh SCL (2017) Sustainable supply chain management and the transition towards a circular economy: evidence and some applications. Omega 66:344–357. https://doi.org/10.1016/j.omega.2015.05.015

    Article  Google Scholar 

  3. Chaari M, Elhadef K, Akermi S, Tounsi L, Ben Hlima H, Ennouri M, Abdelkafi S, Agriopoulou S, Ali DS, Mellouli L, Smaoui S (2024) Development of a novel colorimetric pH-indicator film based on CMC/flaxseed gum/betacyanin from beetroot peels: a powerful tool to monitor the beef meat freshness. Sustain Chem Pharm 39:101543–101558. https://doi.org/10.1016/j.scp.2024.101543

    Article  Google Scholar 

  4. Laso J, Margallo M, Celaya J, Fullana P, Bala A, Gazulla C, Irabien A, Aldaco R (2016) Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry. Waste Manag Res 34:724–733. https://doi.org/10.1177/0734242X16652957

    Article  Google Scholar 

  5. Stahel WR (2016) The circular economy. Nature 531:435–438. https://doi.org/10.1038/531435a

    Article  Google Scholar 

  6. Varzakas T, Smaoui S (2024) Global food security and sustainability issues: the road to 2030 from nutrition and sustainable healthy diets to food systems change. Foods 13:306. https://doi.org/10.3390/foods13020306

    Article  Google Scholar 

  7. Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T (2022) Bioplastics for food packaging: environmental impact, trends and regulatory aspects. Foods 11:3087. https://doi.org/10.3390/foods11193087

    Article  Google Scholar 

  8. Elhadef K, Chaari M, Akermi S, Ennouri K, Hlima HB, Fourati M, Mtibaa AC, Ennouri M, Sarkar T, Shariati MA, Gökşen G (2024) Gelatin-sodium alginate packaging film with date pits extract: an eco-friendly packaging for extending raw minced beef shelf life. Meat Sci 207:109371. https://doi.org/10.1016/j.meatsci.2023.109371

    Article  Google Scholar 

  9. Wilson CT, Harte J, Almenar E (2018) Effects of sachet presence on consumer product perception and active packaging acceptability - a study of fresh-cut cantaloupe. LWT 92:531–539. https://doi.org/10.1016/j.lwt.2018.02.060

    Article  Google Scholar 

  10. Kontominas MG, Badeka AV, Kosma IS, Nathanailides CI (2021) Recent developments in seafood packaging technologies. Foods 10:940. https://doi.org/10.3390/foods10050940

    Article  Google Scholar 

  11. Lionetto F, Esposito Corcione C (2021) Recent applications of biopolymers derived from fish industry waste in food packaging. Polymers 13:2337. https://doi.org/10.3390/polym13142337

    Article  Google Scholar 

  12. Hamed I, Jakobsen AN, Lerfall J (2022) Sustainable edible packaging systems based on active compounds from food processing byproducts: a review. Comp Rev Food Sci Food Safe 21:198–226. https://doi.org/10.1111/1541-4337.12870

    Article  Google Scholar 

  13. Chaari M, Elhadef K, Akermi S, Ben Akacha B, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Rebezov M, Abdelkafi S, Mellouli L, Smaoui S (2022) Novel active food packaging films based on gelatin-sodium alginate containing beetroot peel extract. Antioxidants 11:2095. https://doi.org/10.3390/antiox11112095

    Article  Google Scholar 

  14. Elhadef K, Chaari M, Akermi S, Ennouri K, Ben Hlima H, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Gökşen G, Pateiro M, Mellouli L, Lorenzo JM, Smaoui S (2024) Gelatin-sodium alginate packaging film with date pits extract: an eco-friendly packaging for extending raw minced beef shelf life. Meat Sci 207:109371. https://doi.org/10.1016/j.meatsci.2023.109371

    Article  Google Scholar 

  15. Ștefănescu BE, Socaciu C, Vodnar DC (2022) Recent progress in functional edible food packaging based on gelatin and chitosan. Coatings 12:1815. https://doi.org/10.3390/coatings12121815

    Article  Google Scholar 

  16. Wang H, Ding F, Ma L, Zhang Y (2021) Edible films from chitosan-gelatin: physical properties and food packaging application. Food Biosci 40:100871. https://doi.org/10.1016/j.fbio.2020.100871

    Article  Google Scholar 

  17. Rathod NB, Bangar SP, Šimat V, Ozogul F (2023) Chitosan and gelatine biopolymer-based active/biodegradable packaging for the preservation of fish and fishery products. Int J Food Sci Technol 58:854–861. https://doi.org/10.1111/ijfs.16038

    Article  Google Scholar 

  18. Smaoui S, Chérif I, Ben Hlima H, Khan MU, Rebezov M, Thiruvengadam M, Sarkar T, Shariati MA, Lorenzo JM (2023) Zinc oxide nanoparticles in meat packaging: a systematic review of recent literature. Food Packag Shelf Life 36:101045. https://doi.org/10.1016/j.fpsl.2023.101045

    Article  Google Scholar 

  19. Moosavi-Nasab M, Behroozi B, Gahruie HH, Tavakoli S (2023) Single-to-combined effects of gelatin and aloe vera incorporated with Shirazi thyme essential oil nanoemulsion on shelf-life quality of button mushroom. Qual Assur Saf Crops Foods 15(2):175–187. https://doi.org/10.15586/qas.v15i2.1241

    Article  Google Scholar 

  20. Smaoui S, Ben Hlima H, Tavares L, Ennouri K, Ben Braiek O, Mellouli L, Abdelkafi S, Khaneghah AM (2022) Application of essential oils in meat packaging: a systemic review of recent literature. Food Control 132:108566. https://doi.org/10.1016/j.foodcont.2021.108566

    Article  Google Scholar 

  21. Smaoui S, Ben Hlima H, Tavares L, Ben Braiek O, Ennouri K, Abdelkafi S, Mellouli L, Khaneghah AM (2022) Application of eco-friendly active films and coatings based on natural antioxidant in meat products: a review. Prog Org Coat 166:106780

    Article  Google Scholar 

  22. Ekramian S, Abbaspour H, Roudi B, Amjad L, Nafchi AM (2021) Influence of Nigella sativa L. Extract on physico-mechanical and antimicrobial properties of sago starch film. J Polym Environ 29:201–208. https://doi.org/10.1007/s10924-020-01864-y

    Article  Google Scholar 

  23. Yadav A, Kumar N, Upadhyay A, Singh A, Anurag RK, Pandiselvam R (2023) Effect of mango kernel seed starch-based active edible coating functionalized with lemongrass essential oil on the shelf-life of guava fruit. Qual Assur Saf Crops Foods 14(3):103–115. https://doi.org/10.15586/qas.v14i3.1094

    Article  Google Scholar 

  24. Chaari M, Elhadef K, Akermi S, Ben Hlima H, Fourati M, Chakchouk-Mtibaa A, Ennouri M, D’Amore T, Ali DS, Mellouli L, Khaneghah AM, Smaoui S (2023) Potentials of beetroot (Beta vulgaris L.) peel extract for quality enhancement of refrigerated beef meat. Crops Foods 15(4):99–115. https://doi.org/10.15586/qas.v15i4.1376

    Article  Google Scholar 

  25. Ribeiro MP, da Silveira PHPM, de Oliveira Braga F, Monteiro SN (2022) Fabric impregnation with shear thickening fluid for ballistic armor polymer composites: an updated overview. Polymers 14:4357. https://doi.org/10.3390/polym14204357

    Article  Google Scholar 

  26. Haghighi H, De Leo R, Bedin E, Pfeifer F, Siesler HW, Pulvirenti A (2019) Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications, Food Packaging and Shelf. Life 19:31–39. https://doi.org/10.1016/j.fpsl.2018.11.015

    Article  Google Scholar 

  27. Dammak I, Bittante AM, Lourenco RV, do Amaral Sobral PJ., (2017) Properties of gelatin-based films incorporated with chitosan-coated microparticles charged with rutin. Int J Biol Macromolecules 101:643–652. https://doi.org/10.1016/j.ijbiomac.2017.03.163

    Article  Google Scholar 

  28. Batra M, Malik GK, Mitra J (2020) Enhancing the properties of gelatin–chitosan bionanocomposite films by incorporation of silica nanoparticles. J Food Process Eng 43:e13329. https://doi.org/10.1111/jfpe.13329

    Article  Google Scholar 

  29. Yadav M, Rhee KY, Park SJ (2014) Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohyd Polym 110:18–25. https://doi.org/10.1016/j.carbpol.2014.03.037

    Article  Google Scholar 

  30. Kan J, Liu J, Yong H, Liu Y, Qin Y, Liu J (2019) Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int J Biol Macromol 140:384–392. https://doi.org/10.1016/j.ijbiomac.2019.08.155

    Article  Google Scholar 

  31. Bonilla J, Poloni T, Lourenço RV, Sobral PJA (2018) Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films, Food. Bioscience 23:107–114. https://doi.org/10.1016/j.fbio.2018.03.007

    Article  Google Scholar 

  32. Uranga J, Puertas AI, Etxabide A, Dueñas MT, Guerrero P, de la Caba K (2019) Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocolloids 86:95–103. https://doi.org/10.1016/j.foodhyd.2018.02.018

    Article  Google Scholar 

  33. Ebrahimi S, Fathi M, Kadivar M (2019) Production and characterization of chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to enhance edible film’s properties. Food Packag Shelf Life 22:100387. https://doi.org/10.1016/j.fpsl.2019.100387

    Article  Google Scholar 

  34. Cui H, Bai M, Rashed MMA, Lin L (2018) The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int J Food Microbiol 266:69–78. https://doi.org/10.1016/j.ijfoodmicro.2017.11.019

    Article  Google Scholar 

  35. Atay E, Fabra MJ, Martínez-Sanz M, Gomez-Mascaraque LG, Altan A, Lopez-Rubio A (2018) Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocolloids 77:699–710. https://doi.org/10.1016/j.foodhyd.2017.11.011

    Article  Google Scholar 

  36. Wang Y, Zhang R, Qin W, Dai J, Zhang Q, Lee K, Liu Y (2020) Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Mater Des 185:108277. https://doi.org/10.1016/j.matdes.2019.108277

    Article  Google Scholar 

  37. Chaari M, Smaoui S (2024) Pullulan as a biopolymer from microorganisms: role in food packaging. Curr Food Sci Tech Rep. https://doi.org/10.1007/s43555-024-00023-x

    Article  Google Scholar 

  38. Dang KM, Yoksan R (2016) Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohyd Polym 150:40–47. https://doi.org/10.1016/j.carbpol.2016.04.113

    Article  Google Scholar 

  39. Nilsuwan K, Guerrero P, de la Caba K, Benjakul S, Prodpran T (2019) Properties of fish gelatin films containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids 97:105236. https://doi.org/10.1016/j.foodhyd.2019.105236

    Article  Google Scholar 

  40. Lizárraga-Laborín LL, Quiroz-Castillo JM, Encinas-Encinas JC, Castillo-Ortega MM, Burruel-Ibarra SE, Romero-García J, Torres-Ochoa JA, Cabrera-Germán D, Rodríguez-Félix DE (2018) Accelerated weathering study of extruded polyethylene/poly (lactic acid)/chitosan films. Polym Degrad Stab 155:43–51. https://doi.org/10.1016/j.polymdegradstab.2018.06.007

    Article  Google Scholar 

  41. Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Grossmann MVE (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108:262–267. https://doi.org/10.1016/j.jfoodeng.2011.09.004

    Article  Google Scholar 

  42. Smaoui S, Echegaray N, Kumar M, Chaari M, D’Amore T, Shariati MA, Rebezov M, Lorenzo JM (2023) Beyond conventional meat preservation: saddling the control of bacteriocin and lactic acid bacteria for clean label and functional meat products. App Biochem Biotechnol 4:1–32. https://doi.org/10.1007/s12010-023-04680-x

  43. Grande R, Pessan LA, Carvalho AJF (2018) Thermoplastic blends of chitosan: a method for the preparation of high thermally stable blends with polyesters. Carbohyd Polym 191:44–52. https://doi.org/10.1016/j.carbpol.2018.02.087

    Article  Google Scholar 

  44. Martínez-Camacho AP, Cortez-Rocha MO, Graciano-Verdugo AZ, Rodríguez-Félix F, Castillo-Ortega MM, Burgos-Hernández A, Ezquerra-Brauer JM, Plascencia-Jatomea M (2013) Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohyd Polym 91:666–674. https://doi.org/10.1016/j.carbpol.2012.08.076

    Article  Google Scholar 

  45. Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohyd Polym 137:452–458. https://doi.org/10.1016/j.carbpol.2015.10.093

    Article  Google Scholar 

  46. Krishna M, Nindo CI, Min SC (2012) Development of fish gelatin edible films using extrusion and compression molding. J Food Eng 108:337–344. https://doi.org/10.1016/j.jfoodeng.2011.08.002

    Article  Google Scholar 

  47. Huntrakul K, Yoksan R, Sane A, Harnkarnsujarit N (2020) Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packag Shelf Life 24:100480. https://doi.org/10.1016/j.fpsl.2020.100480

    Article  Google Scholar 

  48. Bof MJ, Bordagaray VC, Locaso DE, García MA (2015) Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids 51:281–294. https://doi.org/10.1016/j.foodhyd.2015.05.018

    Article  Google Scholar 

  49. Leceta I, Guerrero P, Ibarburu I, Dueñas MT, de la Caba K (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899. https://doi.org/10.1016/j.jfoodeng.2013.01.022

    Article  Google Scholar 

  50. Valenzuela C, Abugoch L, Tapia C (2013) Quinoa protein–chitosan–sunflower oil edible film: mechanical, barrier and structural properties. LWT Food Sci Technol 50:531–537. https://doi.org/10.1016/j.lwt.2012.08.010

    Article  Google Scholar 

  51. Jridi M, Hajji S, Ayed HB, Lassoued I, Mbarek A, Kammoun M, Souissi N, Nasri M (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Int J Biol Macromol 67:373–379. https://doi.org/10.1016/j.ijbiomac.2014.03.054

    Article  Google Scholar 

  52. Gómez-Estaca J, Gómez-Guillén MC, Fernández-Martín F, Montero P (2011) Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin–chitosan films. Food Hydrocolloids 25:1461–1469. https://doi.org/10.1016/j.foodhyd.2011.01.007

    Article  Google Scholar 

  53. Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci JF (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids 25:1372–1381. https://doi.org/10.1016/j.foodhyd.2011.01.001

    Article  Google Scholar 

  54. Lee J-H, Lee J-H, Yang H-J, Song KB (2015) Preparation and characterization of brewer’s spent grain protein-chitosan composite films. J Food Sci Technol 52:7549–7555. https://doi.org/10.1007/s13197-015-1941-x

    Article  Google Scholar 

  55. Jia D, Fang Y, Yao K (2009) Water vapor barrier and mechanical properties of konjac glucomannan–chitosan–soy protein isolate edible films. Food Bioprod Process 87:7–10. https://doi.org/10.1016/j.fbp.2008.06.002

    Article  Google Scholar 

  56. Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohyd Polym 81:394–401. https://doi.org/10.1016/j.carbpol.2010.02.037

    Article  Google Scholar 

  57. de Morais Lima M, Carneiro LC, Bianchini D, Dias AR, Zavareze ED, Prentice C, Moreira AD (2017) Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. J Food Sci 82:698–705. https://doi.org/10.1111/1750-3841.13653

    Article  Google Scholar 

  58. Santacruz S, Rivadeneira C, Castro M (2015) Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant’s hydrophobic tail and mechanical treatment. Food Hydrocolloids 49:89–94. https://doi.org/10.1016/j.foodhyd.2015.03.019

    Article  Google Scholar 

  59. Talón E, Trifkovic KT, Nedovic VA, Bugarski BM, Vargas M, Chiralt A, González-Martínez C (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohyd Polym 157:1153–1161. https://doi.org/10.1016/j.carbpol.2016.10.080

    Article  Google Scholar 

  60. Pitak N, Rakshit SK (2011) Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving Fresh-cut vegetables. LWT Food Sci Technol 44:2310–2315. https://doi.org/10.1016/j.lwt.2011.05.024

    Article  Google Scholar 

  61. Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohyd Polym 84:335–342. https://doi.org/10.1016/j.carbpol.2010.11.041

    Article  Google Scholar 

  62. Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62. https://doi.org/10.1016/j.tifs.2015.12.001

    Article  Google Scholar 

  63. Hong Z, Xu Y, Yin J-F, Jin J, Jiang Y, Du Q (2014) Improving the effectiveness of (−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. J Agric Food Chem 62:12603–12609. https://doi.org/10.1021/jf504603n

    Article  Google Scholar 

  64. Prateepchanachai S, Thakhiew W, Devahastin S, Soponronnarit S (2019) Improvement of mechanical and heat-sealing properties of edible chitosan films via addition of gelatin and CO2 treatment of film-forming solutions. Int J Biol Macromol 131:589–600. https://doi.org/10.1016/j.ijbiomac.2019.03.067

    Article  Google Scholar 

  65. Peng Y, Wu Y, Li Y (2013) Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol 59:282–289. https://doi.org/10.1016/j.ijbiomac.2013.04.019

    Article  Google Scholar 

  66. Rezaee M, Askari G, EmamDjomeh Z, Salami M (2018) Effect of organic additives on physiochemical properties and anti-oxidant release from chitosan-gelatin composite films to fatty food simulant. Int J Biol Macromol 114:844–850. https://doi.org/10.1016/j.ijbiomac.2018.03.122

    Article  Google Scholar 

  67. Kaewprachu P, Osako K, Benjakul S, Tongdeesoontorn W, Rawdkuen S (2016) Biodegradable protein-based films and their properties: a comparative study. Packag Technol Sci 29:77–90. https://doi.org/10.1002/pts.2183

    Article  Google Scholar 

  68. Rawdkuen S, Sai-Ut S, Benjakul S (2010) Properties of gelatin films from giant catfish skin and bovine bone: a comparative study. Eur Food Res Technol 231:907–916. https://doi.org/10.1007/s00217-010-1340-5

    Article  Google Scholar 

  69. Ghaderi J, Hosseini SF, Keyvani N, Gómez-Guillén MC (2019) Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids 95:122–132. https://doi.org/10.1016/j.foodhyd.2019.04.021

    Article  Google Scholar 

  70. Mohammadi R, Mohammadifar MA, Rouhi M, Kariminejad M, Mortazavian AM, Sadeghi E, Hasanvand S (2018) Physico-mechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films. Int J Biol Macromol 107:406–412. https://doi.org/10.1016/j.ijbiomac.2017.09.003

    Article  Google Scholar 

  71. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24:770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003

    Article  Google Scholar 

  72. Yang H-J, Lee J-H, Won M, Song KB (2016) Antioxidant activities of distiller dried grains with solubles as protein films containing tea extracts and their application in the packaging of pork meat. Food Chem 196:174–179. https://doi.org/10.1016/j.foodchem.2015.09.020

    Article  Google Scholar 

  73. Jamróz E, Juszczak L, Kucharek M (2018) Development of starch-furcellaran-gelatin films containing tea tree essential oil. J Appl Polym Sci 135:46754. https://doi.org/10.1002/app.46754

    Article  Google Scholar 

  74. Butler BL, Vergano PJ, Testin RF, Bunn JM, Wiles JL (1996) Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J Food Scie 61:953–956. https://doi.org/10.1111/j.1365-2621.1996.tb10909.x

    Article  Google Scholar 

  75. Tyuftin AA, Kerry JP (2021) Gelatin films: study review of barrier properties and implications for future studies employing biopolymer films. Food Packag Shelf Life 29:100688. https://doi.org/10.1016/j.fpsl.2021.100688

    Article  Google Scholar 

  76. Yadav S, Mehrotra GK, Bhartiya P, Singh A, Dutta PK (2020) Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohyd Polym 227:115348. https://doi.org/10.1016/j.carbpol.2019.115348

    Article  Google Scholar 

  77. Wang Q, Tian F, Feng Z, Fan X, Pan Z, Zhou J (2015) Antioxidant activity and physicochemical properties of chitosan films incorporated with Lycium barbarum fruit extract for active food packaging. Int J Food Sci Technol 50:458–464. https://doi.org/10.1111/ijfs.12623

    Article  Google Scholar 

  78. Qin Y-Y, Zhang Z-H, Li L, Yuan M-L, Fan J, Zhao T-R (2015) Physio-mechanical properties of an active chitosan film incorporated with montmorillonite and natural antioxidants extracted from pomegranate rind. J Food Sci Technol 52:1471–1479. https://doi.org/10.1007/s13197-013-1137-1

    Article  Google Scholar 

  79. Bonilla J, Sobral PJA (2016) Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts, Food. Bioscience 16:17–25. https://doi.org/10.1016/j.fbio.2016.07.003

    Article  Google Scholar 

  80. Qin Y, Liu Y, Yuan L, Yong H, Liu J (2019) Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids 96:102–111. https://doi.org/10.1016/j.foodhyd.2019.05.017

    Article  Google Scholar 

  81. Kadam D, Shah N, Palamthodi S, Lele SS (2018) An investigation on the effect of polyphenolic extracts of Nigella sativa seedcake on physicochemical properties of chitosan-based films. Carbohyd Polym 192:347–355. https://doi.org/10.1016/j.carbpol.2018.03.052

    Article  Google Scholar 

  82. Lee MH, Kim SY, Park HJ (2018) Effect of halloysite nanoclay on the physical, mechanical, and antioxidant properties of chitosan films incorporated with clove essential oil. Food Hydrocolloids 84:58–67. https://doi.org/10.1016/j.foodhyd.2018.05.048

    Article  Google Scholar 

  83. Priyadarshi R, Sauraj B, Kumar F, Deeba A, Kulshreshtha YS (2018) Negi, Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocolloids 85:158–166. https://doi.org/10.1016/j.foodhyd.2018.07.003

    Article  Google Scholar 

  84. Amalraj A, Raj KKJ, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization, and antimicrobial activity of chitosan/gum arabic/polyethylene glycol composite films incorporated with black pepper essential oil and ginger essential oil as potential packaging and wound dressing materials. Adv Compos Hybrid Mater 3:485–497. https://doi.org/10.1007/s42114-020-00178-w

    Article  Google Scholar 

  85. Tügen A, Ocak B, Özdestan-Ocak Ö (2020) Development of gelatin/chitosan film incorporated with lemon essential oil with antioxidant properties. Food Measure 14:3010–3019. https://doi.org/10.1007/s11694-020-00547-5

    Article  Google Scholar 

  86. de Oliveira Filho JG, de Deus IP, Valadares AC, Fernandes CC, Estevam EB, Egea MB (2020) Chitosan film with Citrus limonia essential oil: physical and morphological properties and antibacterial activity. Colloid Interface 4:18. https://doi.org/10.3390/colloids4020018

    Article  Google Scholar 

  87. Go E-J, Song KB (2020) Effect of java citronella essential oil addition on the physicochemical properties of Gelidium corneum-chitosan composite films. Food Sci Biotechnol 29:909–915. https://doi.org/10.1007/s10068-020-00740-8

    Article  Google Scholar 

  88. Gallego MG, Gordon MH, Segovia F, Almajano Pablos MP (2016) Gelatine-based antioxidant packaging containing Caesalpinia decapetala and Tara as a coating for ground beef patties. Antioxidants 5:10. https://doi.org/10.3390/antiox5020010

    Article  Google Scholar 

  89. Pattarasiriroj K, Kaewprachu P, Rawdkuen S (2020) Properties of rice flour-gelatine-nanoclay film with catechin-lysozyme and its use for pork belly wrapping. Food Hydrocolloids 107:105951. https://doi.org/10.1016/j.foodhyd.2020.105951

    Article  Google Scholar 

  90. Hoque MdS, Benjakul S, Prodpran T (2011) Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids 25:1085–1097. https://doi.org/10.1016/j.foodhyd.2010.10.005

    Article  Google Scholar 

  91. Vichasilp C, Sai-Ut S, Benjakul S, Rawdkuen S (2014) Effect of longan seed extract and BHT on physical and chemical properties of gelatin based film. Food Biophys 9:238–248. https://doi.org/10.1007/s11483-014-9345-4

    Article  Google Scholar 

  92. Dou L, Li B, Zhang K, Chu X, Hou H (2018) Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. Int J Biol Macromol 118:1377–1383. https://doi.org/10.1016/j.ijbiomac.2018.06.121

    Article  Google Scholar 

  93. Hu X, Yuan L, Han L, Li S, Song L (2019) Characterization of antioxidant and antibacterial gelatin films incorporated with Ginkgo biloba extract. RSC Adv 9:27449–27454. https://doi.org/10.1039/C9RA05788A

    Article  Google Scholar 

  94. Kanatt SR (2020) Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packag Shelf Life 24:100506. https://doi.org/10.1016/j.fpsl.2020.100506

    Article  Google Scholar 

  95. Genskowsky E, Puente LA, Pérez-Álvarez JA, Fernandez-Lopez J, Muñoz LA, Viuda-Martos M (2015) Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT Food Sci Technol 64:1057–1062. https://doi.org/10.1016/j.lwt.2015.07.026

    Article  Google Scholar 

  96. Yuan G, Lv H, Yang B, Chen X, Sun H (2015) Physical properties, antioxidant and antimicrobial activity of chitosan films containing carvacrol and pomegranate peel extract. Molecules 20:11034–11045. https://doi.org/10.3390/molecules200611034

    Article  Google Scholar 

  97. Gómez-Estaca J, Montero P, Fernández-Martín F, Gómez-Guillén MC (2009) Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: a comparative study. J Food Eng 90:480–486. https://doi.org/10.1016/j.jfoodeng.2008.07.022

    Article  Google Scholar 

  98. Gómez-Estaca J, Giménez B, Montero P, Gómez-Guillén MC (2009) Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J Food Eng 92:78–85. https://doi.org/10.1016/j.jfoodeng.2008.10.024

    Article  Google Scholar 

  99. Jamróz E, Kulawik P, Krzyściak P, Talaga-Ćwiertnia K, Juszczak L (2019) Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: characterization, antioxidant and antimicrobial potential. Int J Biol Macromol 122:745–757. https://doi.org/10.1016/j.ijbiomac.2018.11.008

    Article  Google Scholar 

  100. Raeisi M, Mohammadi MA, Coban OE, Ramezani S, Ghorbani M, Tabibiazar M, Khoshbakht R, Noori SM (2021) Physicochemical and antibacterial effect of Soy Protein Isolate/Gelatin electrospun nanofibres incorporated with Zataria multiflora and Cinnamon zeylanicum essential oils. Food Measure 15:1116–1126. https://doi.org/10.1007/s11694-020-00700-0

    Article  Google Scholar 

  101. Rigos G, Padrós F, Golomazou E, Zarza C (2024) Antiparasitic approaches and strategies in European aquaculture, with emphasis on Mediterranean marine finfish farming: present scenarios and future visions. Rev Aquac 16(2):622–643

  102. Tsegay ZT, Agriopoulou S, Chaari M, Smaoui S, Varzakas T (2024) Statistical tools to optimize the recovery of bioactive compounds from marine byproducts. Mar Drugs 22(4):182. https://doi.org/10.3390/md22040182

  103. Bauer A-S, Leppik K, Galić K, Anestopoulos I, Panayiotidis MI, Agriopoulou S, Milousi M, Uysal-Unalan I, Varzakas T, Krauter V (2022) Cereal and confectionary packaging: background, application and shelf-life extension. Foods 11:697. https://doi.org/10.3390/foods11050697

    Article  Google Scholar 

  104. Álvarez-Castillo E, Felix M, Bengoechea C, Guerrero A (2021) Proteins from agri-food industrial biowastes or co-products and their applications as green materials. Foods 10:981. https://doi.org/10.3390/foods10050981

    Article  Google Scholar 

  105. Debeaufort F (2021) Active biopackaging produced from by-products and waste from food and marine industries. FEBS Open Bio 11:984–998. https://doi.org/10.1002/2211-5463.13121

    Article  Google Scholar 

  106. Agriopoulou S (2016) Active packaging for food applications. EC Nutrition 6:86–87

    Google Scholar 

  107. Nawaz A, Li E, Irshad S, Xiong Z, Xiong H, Shahbaz HM, Siddique F (2020) Valorization of fisheries by-products: challenges and technical concerns to food industry. Trends Food Sci Technol 99:34–43. https://doi.org/10.1016/j.tifs.2020.02.022

    Article  Google Scholar 

  108. Olsen RL, Toppe J, Karunasagar I (2014) Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci Technol 36:144–151. https://doi.org/10.1016/j.tifs.2014.01.007

    Article  Google Scholar 

  109. Khalili Tilami S, Sampels S (2018) Nutritional value of fish: lipids, proteins, vitamins, and minerals. Rev Fish Sci Aquac 26:243–253. https://doi.org/10.1080/23308249.2017.1399104

    Article  Google Scholar 

  110. Agriopoulou S, Stamatelopoulou E, Skiada V, Varzakas T (2022) Nanobiotechnology in food preservation and molecular perspective. In: Parameswaranpillai J, Krishnankutty RE, Jayakumar A, Rangappa SM, Siengchin S (eds) Nanotechnology-enhanced food packagingPackaging (1st ed). Wiley-Vch GmbH, Weinheim, pp 327–359. https://doi.org/10.1002/9783527827718.ch14

  111. Sarfraz MH, Hayat S, Siddique MH, Aslam B, Ashraf A, Saqalein M, Khurshid M, Sarfraz MF, Afzal M, Muzammil S (2024) Chitosan based coatings and films: a perspective on antimicrobial, antioxidant, and intelligent food packaging. Prog Org Coat 188:108235. https://doi.org/10.1016/j.porgcoat.2024.108235

    Article  Google Scholar 

  112. Valdés A, Garcia-Serna E, Martínez-Abad A, Vilaplana F, Jimenez A, Garrigós MC (2020) Gelatin-based antimicrobial films incorporating pomegranate (Punica granatum L.) seed juice by-product. Molecules 25:166. https://doi.org/10.3390/molecules25010166

    Article  Google Scholar 

  113. Chen Z, Pan S, Zhou Z, Lei T, Dong B, Xu P (2019) The effect of shear deformation on permeability of 2.5D woven preform. Materials 12:3594. https://doi.org/10.3390/ma12213594

    Article  Google Scholar 

  114. Zhang J, Zou X, Zhai X, Huang X, Jiang C, Holmes M (2019) Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem 272:306–312. https://doi.org/10.1016/j.foodchem.2018.08.041

    Article  Google Scholar 

  115. Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP (2021) Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 182:1015–1025. https://doi.org/10.1016/j.ijbiomac.2021.04.027

    Article  Google Scholar 

  116. Jridi M, Abdelhedi O, Salem A, Kechaou H, Nasri M, Menchari Y (2020) Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: wrapping application. Food Hydrocolloids 103:105688. https://doi.org/10.1016/j.foodhyd.2020.105688

    Article  Google Scholar 

  117. Kulkarni P, Maniyar M, Nalawade M, Bhagwat P, Pillai S (2022) Isolation, biochemical characterization, and development of a biodegradable antimicrobial film from Cirrhinus mrigala scale collagen. Environ Sci Pollut Res 29:18840–18850. https://doi.org/10.1007/s11356-021-17108-y

    Article  Google Scholar 

  118. Ahmed M, Verma AK, Patel R (2022) Physiochemical, antioxidant, and food simulant release properties of collagen-carboxymethyl cellulose films enriched with Berberis lyceum root extract for biodegradable active food packaging. J Food Process Preserv 46:e16485. https://doi.org/10.1111/jfpp.16485

    Article  Google Scholar 

  119. Zhuang Y, Ruan S, Yao H, Sun Y (2019) Physical properties of composite films from tilapia skin collagen with pachyrhizus starch and rambutan peel phenolics. Mar Drugs 17:662. https://doi.org/10.3390/md17120662

    Article  Google Scholar 

  120. Song G, Lin S, Wu Y, Shen J, Wu J, Zhu W, Yu S, Li J, Wang S (2023) Emulsifier free fish gelatin based films with excellent antioxidative and antibacterial activity: preparation, characterization and application in coating preservation of fish fillets. J Food Eng 343:111362. https://doi.org/10.1016/j.jfoodeng.2022.111362

    Article  Google Scholar 

  121. da Silva E, Silva N, de Souza FF, dos Santos Freitas MM, Pino Hernández EJG, Dantas VV, Enê Chaves Oliveira M, Peixoto Joele MRS, Lourenço LDFH (2021) Artificial intelligence application for classification and selection of fish gelatin packaging film produced with incorporation of palm oil and plant essential oils. Food Packag Shelf Life 27:100611. https://doi.org/10.1016/j.fpsl.2020.100611

  122. Kchaou H, Jridi M, Benbettaieb N, Debeaufort F, Nasri M (2020) Bioactive films based on cuttlefish (Sepia officinalis) skin gelatin incorporated with cuttlefish protein hydrolysates: physicochemical characterization and antioxidant properties. Food Packag Shelf Life 24:100477. https://doi.org/10.1016/j.fpsl.2020.100477

    Article  Google Scholar 

  123. Huang T, Fang Z, Zhao H, Xu D, Yang W, Yu W, Zhang J (2020) Physical properties and release kinetics of electron beam irradiated fish gelatin films with antioxidants of bamboo leaves. Food Biosci 36:100597. https://doi.org/10.1016/j.fbio.2020.100597

    Article  Google Scholar 

  124. Mishra PK, Gautam RK, Kumar V, Kakatkar AS, Chatterjee S (2021) Synthesis of biodegradable films using gamma irradiation from fish waste. Waste Biomass Valor 12:2247–2257. https://doi.org/10.1007/s12649-020-01143-w

    Article  Google Scholar 

  125. Pereira GV, Pereira GV, Neves EM, Joele MR, Lima CL, Lourenço LD (2018) Effect of adding fatty acids and surfactant on the functional properties of biodegradable films prepared with myofibrillar proteins from acoupa weakfish (Cynoscion acoupa). Food Sci Technol 39:287–294. https://doi.org/10.1590/fst.03718

    Article  Google Scholar 

  126. Elhussieny A, Faisal M, D’Angelo G, Aboulkhair NT, Everitt NM, Fahim IS (2020) Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Engineering Journal 11:1219–1226. https://doi.org/10.1016/j.asej.2020.01.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Slim Smaoui: conceptualization, investigation, methodology, formal analysis, writing original draft, and writing—reviewing and editing; Moufida Chaari: investigation writing—original draft, and writing—review and editing; Sofia Agriopoulou: writing—review and editing, investigation, supervision, and resources; Theodoros Varzakas: writing—review and editing and investigation.

Corresponding author

Correspondence to Slim Smaoui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaoui, S., Chaari, M., Agriopoulou, S. et al. Green active films/coatings based on seafood by-products (chitosan and gelatin): a powerful tool in food packaging. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05669-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05669-0

Keywords

Navigation