Skip to main content
Log in

Magnetic nanocomposite synthesized from cocopeat for highly efficient mercury removal from aqueous solutions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The utilization of renewable and cost-effective biomass for the production of activated carbon represents an innovative approach to environmental remediation. In this work, environmentally friendly carbon materials derived from cocopeat were employed to create a cocopeat-based magnetic activated carbon (CPAC-Fe3O4) nanocomposite for the removal of mercury from aqueous solutions. The CPAC-Fe3O4 nanocomposite underwent comprehensive characterization using SEM, FTIR, BET, XRD, and VSM analyses. The optimization process revealed a maximum adsorption capacity of 204.08 mg/g under specific conditions: initial Hg concentration of 20 mg/L, pH of 6, temperature of 25 °C, and adsorbent dose of 0.01 g within 60 min. Isotherm and kinetic modeling exhibited strong agreement with the Freundlich isotherm (0.9749) and pseudo-second-order (0.9997) kinetic models, indicating a favorable chemisorption process. Furthermore, thermodynamic analysis suggested that the adsorption process is endothermic and spontaneous. The adsorption mechanism was elucidated based on FTIR analysis. The results highlight the CPAC-Fe3O4 nanocomposite as a promising and sustainable candidate for effective water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Abyar H, Nowrouzi M, Rostami A (2022) A comprehensive study of biological phosphorus removal systems from economic and environmental perspectives based on the optimization approach. Environ Technol Innov 28:102811

    Article  CAS  Google Scholar 

  2. Nowrouzi M, Abyar H, Rohani S (2023) A comparison of nitrogen removal systems through cost-coupled life cycle assessment and energy efficiency analysis. Sci Total Environ 858:159787

    Article  CAS  PubMed  ADS  Google Scholar 

  3. J Rajapakse M Otoo G Danso 2023 Progress in delivering SDG6: safe water and sanitation Cambridge Prisms: Water 1 e6

  4. Barati AA, Pour MD, Sardooei MA (2023) Water crisis in Iran: a system dynamics approach on water, energy, food, land and climate (WEFLC) nexus. Sci Total Environ 882:163549

    Article  CAS  PubMed  ADS  Google Scholar 

  5. AMMA Caretta, RBM Arfanuzzaman, SMR Morgan, M Kumar Water. In: Climate change 2022: impacts, adaptation, and vulnerability. Contribution of Working Group II to the in: I.P.o.C. Change (Ed.) 2022

  6. He C, Liu Z, Wu J, Pan X, Fang Z, Li J, Bryan BA (2021) Future global urban water scarcity and potential solutions. Nat Commun 12(1):4667

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2(2):e1500323

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Dixit A, Madhav S, Mishra R, Srivastav AL, Garg P (2022) Impact of climate change on water resources, challenges and mitigation strategies to achieve sustainable development goals. Arab J Geosci 15(14):1296

    Article  Google Scholar 

  9. Mikulčić H, Baleta J, Wang X, Duić N, Dewil R (2022) Sustainable development in period of climate crisis. J Environ Manage 303:114271

    Article  PubMed  Google Scholar 

  10. Stringer LC, Mirzabaev A, Benjaminsen TA, Harris RM, Jafari M, Lissner TK, Stevens N, Tirado-von Der Pahlen C (2021) Climate change impacts on water security in global drylands. One Earth 4(6):851–864

    Article  ADS  Google Scholar 

  11. Attari M, Bukhari SS, Kazemian H, Rohani S (2017) A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J Environ Chem Eng 5(1):391–399

    Article  CAS  Google Scholar 

  12. Monjane-Mabuie A, Mondlane-Milisse A, Pedro O, Leão-Buchir J, Correia D (2022) Mercury pollution assessment and metallothionein gene expression in tilapia (Oreochromis mossambicus): a case study of Revuè River in Manica, Mozambique. Rendiconti Lincei Scienze Fisiche e Naturali 33(3):513–526

    Article  ADS  Google Scholar 

  13. Zarei S, Raanaei H, Niad M (2023) Investigation of mercury removal by Fe3O4@ SiO2-NH2-GO-NC as magnetic nanocomposite. Inorg Chem Commun 152:110665

    Article  CAS  Google Scholar 

  14. Adibkia M, Tajjarod S, Talavari A, Noviery E, Azimi Maleki S (2017) The effect of amino acid coating on the performance of magnetic nanoparticles for the elimination of mercury from waste. Chem Metall Eng J 4(1):1–11

    Google Scholar 

  15. EC Emenike, AG Adeniyi, KO Iwuozor, CJ Okorie, AU Egbemhenghe, PE Omuku, KC Okwu, OD Saliu 2023 A critical review on the removal of mercury (Hg2+) from aqueous solution using nanoadsorbents Environ Nanotechnol Monit Manag 100816

  16. Behjati M, Baghdadi M, Karbassi A (2018) Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite. J Environ Manage 213:66–78

    Article  CAS  PubMed  Google Scholar 

  17. EC Emenike, KO Iwuozor, SU Anidiobi Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques Biol Trace Elem Res (2021) 1–17

  18. Awual MR (2017) Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem Eng J 307:456–465

    Article  CAS  Google Scholar 

  19. Chen J, Wang Y, Wei X, Xu P, Xu W, Ni R, Meng J (2018) Magnetic solid-phase extraction for the removal of mercury from water with ternary hydrosulphonyl-based deep eutectic solvent modified magnetic graphene oxide. Talanta 188:454–462

    Article  CAS  PubMed  Google Scholar 

  20. Igwegbe CA, Obiora-Okafo IA, Iwuozor KO, Ghosh S, Kurniawan SB, Rangabhashiyam S, Kanaoujiya R, Ighalo JO (2022) Treatment technologies for bakers’ yeast production wastewater. Environ Sci Pollut Res 29(8):11004–11026

    Article  CAS  Google Scholar 

  21. Iwuozor KO (2019) Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Adv J Chem A 2(2):105–127

    Article  CAS  Google Scholar 

  22. Saleh TA, Mustaqeem M, Khaled M (2022) Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ Nanotechnol Monit Manag 17:100617

    CAS  Google Scholar 

  23. Talebi J, Halladj R, Askari S (2010) Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. J Mater Sci 45:3318–3324

    Article  CAS  ADS  Google Scholar 

  24. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Qari HA, Umar K, Mohamad Ibrahim MN (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Nejati B, Adami P, Bozorg A, Tavasoli A, Mirzahosseini AH (2020) Catalytic pyrolysis and bio-products upgrading derived from Chlorella vulgaris over its biochar and activated biochar-supported Fe catalysts. J Anal Appl Pyrol 152:104799

    Article  CAS  Google Scholar 

  26. Nowrouzi M, Younesi H, Bahramifar N (2017) High efficient carbon dioxide capture onto as-synthesized activated carbon by chemical activation of Persian Ironwood biomass and the economic pre-feasibility study for scale-up. J Clean Prod 168:499–509

    Article  CAS  Google Scholar 

  27. Zhao Y, Xia K, Zhang Z, Zhu Z, Guo Y, Qu Z (2019) Facile synthesis of polypyrrole-functionalized CoFe2O4@ SiO2 for removal for Hg (II). Nanomaterials 9(3):455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Zhang Z, Zhao Y, Xia K, Guo Y, Qu Z, Bai R (2018) A mild and facile synthesis of amino functionalized CoFe2O4@ SiO2 for Hg (II) removal. Nanomaterials 8(9):673

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bao S, Li K, Ning P, Peng J, Jin X, Tang L (2017) Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: behaviours and mechanisms. Appl Surf Sci 393:457–466

    Article  CAS  ADS  Google Scholar 

  30. Zhang S, Qian L, Zhou Y, Guo Y (2023) High selective removal towards Hg (II) from aqueous solution with magnetic diatomite-based adsorbent functionalized by poly (3-aminothiophenol): conditional optimization, application, and mechanism. Environ Sci Pollut Res 30(19):56121–56136

    Article  CAS  Google Scholar 

  31. Lin Z, Pan Z, Zhao Y, Qian L, Shen J, Xia K, Guo Y, Qu Z (2020) Removal of Hg2+ with polypyrrole-functionalized Fe3O4/kaolin: synthesis, performance and optimization with response surface methodology. Nanomaterials 10(7):1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Sireesha, I. Sreedhar 2023 Holistic and parametric optimization study on Cr (VI) removal using acid-treated coco peat biochar adsorbent, Bioresource Technology Reports 101486

  33. Varghese SM, Chowdhury AR, Arnepalli DN, Rao GR (2023) Delineating the effects of pore structure and N-doping on CO2 adsorption using coco peat derived carbon. Carbon Trends 10:100250

    Article  CAS  Google Scholar 

  34. Peer FE, Bahramifar N, Younesi H (2018) Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets. J Taiwan Inst Chem Eng 87:225–240

    Article  Google Scholar 

  35. Venkateswarlu S, Yoon M, Kim MJ (2022) An environmentally benign synthesis of Fe3O4 nanoparticles to Fe3O4 nanoclusters: rapid separation and removal of Hg (II) from an aqueous medium. Chemosphere 286:131673

    Article  CAS  PubMed  Google Scholar 

  36. Yang L, Wang Z, Yang L, Li X, Zhang Y, Lu C (2017) Coco peat powder as a source of magnetic sorbent for selective oil–water separation. Ind Crops Prod 101:1–10

    Article  CAS  Google Scholar 

  37. Okoli CP, Naidoo EB, Ofomaja AE (2018) Role of synthesis process variables on magnetic functionality, thermal stability, and tetracycline adsorption by magnetic starch nanocomposite. Environ Nanotechnol Monit Manag 9:141–153

    Google Scholar 

  38. Bunaciu AA, UdriŞTioiu EG, Aboul-Enein HY (2015) X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45(4):289–299

    Article  CAS  PubMed  Google Scholar 

  39. Verma S, Kujur S, Sharma R, Pathak DD (2022) Cucurbit [6] uril-supported Fe3O4 magnetic nanoparticles catalyzed green and sustainable synthesis of 2-substituted benzimidazoles via acceptorless dehydrogenative coupling. ACS Omega 7(11):9754–9764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan YH, Davis JA, Fujikawa K, Ganesh NV, Demchenko AV, Stine KJ (2012) Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J Mater Chem 22(14):6733–6745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ncibi M, Jeanne-Rose V, Mahjoub B, Jean-Marius C, Lambert J, Ehrhardt J, Bercion Y, Seffen M, Gaspard S (2009) Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres. J Hazard Mater 165(1–3):240–249

    Article  CAS  PubMed  Google Scholar 

  42. Fu H, Yan D, Yao C, Su X, Wang X, Wang H, Li Y (2022) Pore structure and multi-scale fractal characteristics of adsorbed pores in marine shale: a case study of the Lower Silurian Longmaxi shale in the Sichuan Basin China. J Earth Sci 33(5):1278–1290

    Article  CAS  Google Scholar 

  43. Kianfar E (2018) Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russ J Appl Chem 91(10):1711–1720

    Article  CAS  Google Scholar 

  44. Mangi HN, Chi R, DeTian Y, Sindhu L, He D, Ashraf U, Fu H, Zixuan L, Zhou W, Anees A (2022) The ungrind and grinded effects on the pore geometry and adsorption mechanism of the coal particles. J Nat Gas Sci Eng 100:104463

    Article  CAS  Google Scholar 

  45. Ebadi M, Rifqi Md Zain A, Tengku Abdul Aziz TH, Mohammadi H, Tee CA, Rahimi Yusop M (2023) Formulation and characterization of Fe3O4@ PEG nanoparticles loaded sorafenib; molecular studies and evaluation of cytotoxicity in liver cancer cell lines. Polymers 15(4):971

  46. Ma Z, Liu F, Liu N, Liu W, Tong M (2021) Facile synthesis of sulfhydryl modified covalent organic frameworks for high efficient Hg (II) removal from water. J Hazard Mater 405:124190

    Article  CAS  PubMed  Google Scholar 

  47. Einollahipeer F, Okati N (2022) High efficient Hg (II) and TNP removal by NH2 grafted magnetic graphene oxide synthesized from Typha latifolia. Environ Technol 43(25):3956–3972

    Article  CAS  Google Scholar 

  48. Ahmad M, Wang J, Xu J, Yang Z, Zhang Q, Zhang B (2020) Novel synthetic method for magnetic sulphonated tubular trap for efficient mercury removal from wastewater. J Colloid Interface Sci 565:523–535

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Ge H, Hua T, Wang J (2017) Preparation and characterization of poly (itaconic acid)-grafted crosslinked chitosan nanoadsorbent for high uptake of Hg2+ and Pb2+. Int J Biol Macromol 95:954–961

    Article  CAS  PubMed  Google Scholar 

  50. Das S, Samanta A, Kole K, Gangopadhyay G, Jana S (2020) MnO2 flowery nanocomposites for efficient and fast removal of mercury (II) from aqueous solution: a facile strategy and mechanistic interpretation. Dalton Trans 49(20):6790–6800

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Z, Xia K, Pan Z, Yang C, Wang X, Zhang G, Guo Y, Bai R (2020) Removal of mercury by magnetic nanomaterial with bifunctional groups and core-shell structure: synthesis, characterization and optimization of adsorption parameters. Appl Surf Sci 500:143970

    Article  CAS  Google Scholar 

  52. Awad FS, AbouZied KM, Abou El-Maaty WM, El-Wakil AM, El-Shall MS (2020) Effective removal of mercury (II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab J Chem 13(1):2659–2670

    Article  CAS  Google Scholar 

  53. Khorshidi P, Shirazi RHSM, Miralinaghi M, Moniri E, Saadi S (2020) Adsorptive removal of mercury (II), copper (II), and lead (II) ions from aqueous solutions using glutathione-functionalized NiFe2O4/graphene oxide composite. Res Chem Intermed 46:3607–3627

    Article  CAS  Google Scholar 

  54. Falahian Z, Torki F, Faghihian H (2018) Synthesis and application of polypyrrole/Fe3O4 nanosize magnetic adsorbent for efficient separation of Hg2+ from aqueous solution. Global Chall 2(1):1700078

    Article  Google Scholar 

  55. Asasian N, Kaghazchi T, Soleimani M (2012) Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. J Ind Eng Chem 18(1):283–289

    Article  CAS  Google Scholar 

  56. Naushad M, Ahamad T, AlOthman ZA, Ala’a H (2019) Green and eco-friendly nanocomposite for the removal of toxic Hg (II) metal ion from aqueous environment: adsorption kinetics & isotherm modelling. J Mol Liq 279:1–8

    Article  CAS  Google Scholar 

  57. Ifthikar J, Jiao X, Ngambia A, Wang T, Khan A, Jawad A, Xue Q, Liu L, Chen Z (2018) Facile one-pot synthesis of sustainable carboxymethyl chitosan–sewage sludge biochar for effective heavy metal chelation and regeneration. Biores Technol 262:22–31

    Article  CAS  Google Scholar 

  58. Xia K, Guo Y, Shao Q, Zan Q, Bai R (2019) Removal of mercury (II) by EDTA-functionalized magnetic CoFe2O4@ SiO2 nanomaterial with core-shell structure. Nanomaterials 9(11):1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang S, Ma C, Liao Y, Min C, Du P, Jiang Y (2016) Removal of mercury (II) from aqueous solutions by adsorption on poly (1-amino-5-chloroanthraquinone) nanofibrils: equilibrium, kinetics, and mechanism studies. J Nanomater 2016:7245829

    Article  Google Scholar 

  60. Mensah MB, Lewis DJ, Boadi NO, Awudza JA (2021) Heavy metal pollution and the role of inorganic nanomaterials in environmental remediation. R Soc Open Sci 8(10):201485

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Rahmanzadeh L, Ghorbani M, Jahanshahi M (2016) Effective removal of hexavalent mercury from aqueous solution by modified polymeric nanoadsorbent. J Water Environ Nanotechnol 1(1):1–8

    Google Scholar 

  62. AlOmar MK, Alsaadi MA, Jassam TM, Akib S, Hashim MA (2017) Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. J Colloid Interface Sci 497:413–421

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Tabatabaiee Bafrooee AA, Ahmad Panahi H, Moniri E, Miralinaghi M, Hasani AH (2020) Removal of Hg2+ by carboxyl-terminated hyperbranched poly (amidoamine) dendrimers grafted superparamagnetic nanoparticles as an efficient adsorbent. Environ Sci Pollut Res 27:9547–9567

    Article  CAS  Google Scholar 

  64. Zhang Y, Yan L, Xu W, Guo X, Cui L, Gao L, Wei Q, Du B (2014) Adsorption of Pb (II) and Hg (II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J Mol Liq 191:177–182

    Article  CAS  Google Scholar 

  65. Cui L, Guo X, Wei Q, Wang Y, Gao L, Yan L, Yan T, Du B (2015) Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. J Colloid Interface Sci 439:112–120

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Goci MC, Leudjo Taka A, Martin L, Klink MJ (2023) Chitosan-based polymer nanocomposites for environmental remediation of mercury pollution. Polymers 15(3):482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu F, Liu Y, Xu Y, Ni L, Meng X, Hu Z, Zhong G, Meng M, Wang Y, Han J (2015) Efficient static and dynamic removal of Sr (II) from aqueous solution using chitosan ion-imprinted polymer functionalized with dithiocarbamate. J Environ Chem Eng 3(2):1061–1071

    Article  CAS  Google Scholar 

  68. Zhao R, Jia L, Yao Y-X, Huo R-P, Qiao X-L, Fan B-G (2019) Study of the effect of adsorption temperature on elemental mercury removal performance of iron-based modified biochar. Energy Fuels 33(11):11408–11419

    Article  CAS  Google Scholar 

  69. Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H (2016) Development of coconut pith chars towards high elemental mercury adsorption performance–effect of pyrolysis temperatures. Chemosphere 156:56–68

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Fuente-Cuesta A, Diaz-Somoano M, Lopez-Anton M, Cieplik M, Fierro J, Martínez-Tarazona M (2012) Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion. J Environ Manage 98:23–28

    Article  CAS  PubMed  Google Scholar 

  71. Safari N, Ghanemi K, Buazar F (2020) Selenium functionalized magnetic nanocomposite as an effective mercury (II) ion scavenger from environmental water and industrial wastewater samples. J Environ Manage 276:111263

    Article  CAS  PubMed  Google Scholar 

  72. Bhatnagar P, Sireesha S, Siddiqui S, Sreedhar I (2023) Novel pectin-cellulose-biochar composite with SDS modification for copper removal: optimization, characterization, and regeneration. Bioresour Technol Rep 21:101382

    Article  CAS  Google Scholar 

  73. Samaniego JO, Tanchuling MAN (2019) Removal of heavy metals from an actual small scale gold mining wastewater by sorption onto Cocopeat. ASEAN J Sci Technol Dev 36(1):1–7

    Article  Google Scholar 

  74. Hosseini-Bandegharaei A, Hosseini MS, Jalalabadi Y, Sarwghadi M, Nedaie M, Taherian A, Ghaznavi A, Eftekhari A (2011) Removal of Hg (II) from aqueous solutions using a novel impregnated resin containing 1-(2-thiazolylazo)-2-naphthol (TAN). Chem Eng J 168(3):1163–1173

    Article  CAS  Google Scholar 

  75. Jena KK, Reddy KSK, Karanikolos GN, Choi DS (2023) l-Cysteine and silver nitrate based metal sulfide and Zeolite-Y nano adsorbent for efficient removal of mercury (II) ion from wastewater. Appl Surf Sci 611:155777

    Article  CAS  Google Scholar 

  76. Arshadi M, Mousavinia F, Khalafi-Nezhad A, Firouzabadi H, Abbaspourrad A (2017) Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles. J Colloid Interface Sci 505:293–306

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Chen F, Ma N, Peng G, Xu W, Zhang Y, Meng F, Huang Q, Hu B, Wang Q, Guo X (2023) Camellia oleifera shell biochar as a robust adsorbent for aqueous mercury removal. Fermentation 9(3):295

    Article  Google Scholar 

  78. Esrafili A, Ghambarian M, Tajik M, Baharfar M (2020) Adsorptive removal of Hg2+ from environmental water samples using thioglycerol-intercalated magnetic layered double hydroxides. Anal Methods 12(17):2279–2286

    Article  CAS  PubMed  Google Scholar 

  79. Hadi P, To M-H, Hui C-W, Lin CSK, McKay G (2015) Aqueous mercury adsorption by activated carbons. Water Res 73:37–55

    Article  CAS  PubMed  Google Scholar 

  80. Sun X, Hwang J-Y, Xie S (2011) Density functional study of elemental mercury adsorption on surfactants. Fuel 90(3):1061–1068

    Article  CAS  Google Scholar 

  81. Duan L, Hu X, Sun D, Liu Y, Guo Q, Zhang T, Zhang B (2020) Rapid removal of low concentrations of mercury from wastewater using coal gasification slag. Korean J Chem Eng 37:1166–1173

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Gorgan University of Agricultural Sciences and Natural Resources, Iran [grant number 01–474-96].

Author information

Authors and Affiliations

Authors

Contributions

Hassan Rezaei: conceptualization, investigation, methodology, and supervision; Negar Movazzaf Rostami: investigation, methodology, original draft; Hajar Abyar: data analysis, original draft, and draft review and editing.

Corresponding author

Correspondence to Hassan Rezaei.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, H., Rostami, N.M. & Abyar, H. Magnetic nanocomposite synthesized from cocopeat for highly efficient mercury removal from aqueous solutions. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05425-4

Keywords

Navigation