Skip to main content
Log in

Utilizing peracetic acid as an eco-friendly bleaching agent: investigating whiteness levels of cellulose microfibers from corn husk waste

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Currently, the disposal of agro-industrial waste has generated an urgent need to find eco-friendly methods to convert these wastes into value-added products like cellulose, without the use of chlorine for bleaching purposes. Based on this assumption, a comparative study was conducted using corn husk as raw material to evaluate the performance of a chlorine-free whitener such as peracetic acid, after scouring processes for further comparison with conventional bleaching agents such as sodium chlorite and hydrogen peroxide. Successful cellulose isolation using peracetic acid was demonstrated through ATR-IR, attributed to the presence of a characteristic band at 885 cm−1 and the absence of the band at 1224 cm−1 associated with lignin residues. Additionally, XRD analysis identified peaks of cellulose at 2θ = 15.9°, associated with the overlap of the (1-10) and (110) planes, and at 2θ = 22.5°. Thermal analysis demonstrated the stability and purity of the obtained cellulose, identifying water chemisorption at 125 °C and decomposition at 358.5 °C, free from lignin groups. SEM analysis revealed a fibrillated network morphology with a rough surface in cellulose-based materials extracted from corn husk. Moreover, the cellulose obtained by peracetic acid bleaching (PAAC) exhibited the least fluorescence intensity, and the values obtained by reflectance were ΔE = 1.37, WI = 96.7, and YI = 3.46. Finally, PAAC demonstrates its potential as a source for obtaining cellulose nanocrystals (CNC), achieving a particle size of approximately 214.6 nm, and exhibiting a rod-like structure identified by AFM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable

References

  1. Jannat N, Hussien A, Abdullah B, Cotgrave A (2020) Application of agro and non-agro waste materials for unfired earth blocks construction: a review. Constr Build Mater 254:119346. https://doi.org/10.1016/j.conbuildmat.2020.119346

    Article  Google Scholar 

  2. FAO (2022) World Food and Agriculture – Statistical Yearbook 2022. FAO, Rome

    Google Scholar 

  3. Duru CE (2020) Mineral and phytochemical evaluation of Zea mays husk. Sci Afr 7:e00224. https://doi.org/10.1016/j.sciaf.2019.e00224

    Article  Google Scholar 

  4. MINAM (2018) Línea de base de la diversidad genética del maíz peruano con fines de bioseguridad, Lima

  5. CONCYTEC (2016) Programa Nacional Transversal de Valorización de la Biovidersidad, pp 1–48

    Google Scholar 

  6. INEI (2023) Evaluación de las Exportaciones e Importaciones: Diciembre 2022, Lima

  7. INEI (2023) Producción Nacional: Diciembre 2022, Lima

  8. MIDAGRI (2022) El Agro en cifras: Diciembre 2022, Lima

  9. Ratna AS, Ghosh A, Mukhopadhyay S (2022) Advances and prospects of corn husk as a sustainable material in composites and other technical applications. J Clean Prod 371:133563. https://doi.org/10.1016/j.jclepro.2022.133563

    Article  Google Scholar 

  10. Dahliyanti A, Yunitama DA, Rofiqoh IM, Mustapha M (2022) Synthesis and characterization of silica xerogel from corn husk waste as cationic dyes adsorbent. F1000Res 11:1–11. https://doi.org/10.12688/f1000research.75979.1

    Article  CAS  Google Scholar 

  11. Bilias F, Kalderis D, Richardson C et al (2023) Biochar application as a soil potassium management strategy: a review. Sci Total Environ 858:159782. https://doi.org/10.1016/j.scitotenv.2022.159782

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Gu G, Gu G, Shang W et al (2022) The self-powered agricultural sensing system with 1.7 km wireless multichannel signal transmission using a pulsed triboelectric nanogenerator of corn husk composite film. Nano Energy 102:107699. https://doi.org/10.1016/j.nanoen.2022.107699

    Article  CAS  Google Scholar 

  13. Seo JY, Tokmurzin D, Lee D et al (2022) Production of biochar from crop residues and its application for biofuel production processes – an overview. Bioresour Technol 361:127740. https://doi.org/10.1016/j.biortech.2022.127740

    Article  CAS  PubMed  Google Scholar 

  14. Bernhardt DC, Ponce NMA, Basanta MF et al (2019) Husks of Zea mays as a potential source of biopolymers for food additives and materials’ development. Heliyon 5:e01313. https://doi.org/10.1016/j.heliyon.2019.e01313

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alshahrani H, Arun Prakash VR (2022) Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production. J Clean Prod 374:133931. https://doi.org/10.1016/j.jclepro.2022.133931

    Article  CAS  Google Scholar 

  16. Song Z, Xiong X, Huang G (2023) Ultrasonics sonochemistry ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. Ultrason Sonochem 95:106416. https://doi.org/10.1016/j.ultsonch.2023.106416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kambli N, Basak S, Samanta KK, Deshmukh RR (2016) Extraction of natural cellulosic fibers from cornhusk and its physico-chemical properties. Fibers and Polymers 17:687–694. https://doi.org/10.1007/s12221-016-5416-0

    Article  CAS  Google Scholar 

  18. Kassab Z, Abdellaoui Y, Salim MH, El Achaby M (2020) Cellulosic materials from pea (Pisum sativum) and broad beans (Vicia faba) pods agro-industrial residues. Mater Lett 280. https://doi.org/10.1016/j.matlet.2020.128539

  19. Boussetta A, Charii H, Ait Benhamou A et al (2023) Bio-composites based on cellulosic fibers from agro-industrial waste filled PP matrix: production and properties. Polymer Bull 80:13025–13050. https://doi.org/10.1007/s00289-023-04698-5

    Article  CAS  Google Scholar 

  20. Ait Benhamou A, Kassab Z, Boussetta A et al (2022) Beneficiation of cactus fruit waste seeds for the production of cellulose nanostructures: extraction and properties. Int J Biol Macromol 203:302–311. https://doi.org/10.1016/j.ijbiomac.2022.01.163

    Article  CAS  PubMed  Google Scholar 

  21. Semlali FZ, Ait Benhamou A, El Bourakadi K et al (2023) Thermo-compression process-mediated in-situ cellulose microfibers phosphorylation enables high performant cellulosic paper packaging. Chem Eng J 473. https://doi.org/10.1016/j.cej.2023.145268

  22. Khalili H, Bahloul A, Ablouh E-H et al (2023) Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). Int J Biol Macromol 226:345–356. https://doi.org/10.1016/j.ijbiomac.2022.11.313

    Article  CAS  PubMed  Google Scholar 

  23. Akhlamadi G, Goharshadi EK (2021) Sustainable and superhydrophobic cellulose nanocrystal-based aerogel derived from waste tissue paper as a sorbent for efficient oil/water separation. Process Safety Environ Protect 154:155–167. https://doi.org/10.1016/j.psep.2021.08.009

    Article  CAS  Google Scholar 

  24. Zheng M, Zhang K, Zhang J et al (2022) Cheap, high yield, and strong corn husk-based textile bio-fibers with low carbon footprint via green alkali retting-splicing-twisting strategy. Ind Crops Prod 188:115699. https://doi.org/10.1016/j.indcrop.2022.115699

    Article  CAS  Google Scholar 

  25. Patil H, Athalye A (2023) Valorization of corn husk waste for textile applications. J Nat Fibers 20. https://doi.org/10.1080/15440478.2022.2156017

  26. Jain A, Rastogi D, Chanana B et al (2017) Extraction of cornhusk fibres for textile usages. IOSR J Polymer Textile Eng 04:29–34. https://doi.org/10.9790/019x-04012934

    Article  Google Scholar 

  27. Rizwan M, Gilani SR, Durrani AI, Naseem S (2021) International Journal of Biological macromolecules cellulose extraction of Alstonia scholaris : a comparative study on efficiency of different bleaching reagents for its isolation and characterization. Int J Biol Macromol 191:964–972. https://doi.org/10.1016/j.ijbiomac.2021.09.155

    Article  CAS  PubMed  Google Scholar 

  28. Sharma STN, Bhardwaj IANK (2018) Effectiveness of different green chemistry approaches during mixed hardwood bamboo pulp bleaching and their impact on environment. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-1887-4

  29. Sharma N, Tripathi SK, Bhardwaj NK (2020) Utilization of sarkanda for making pulp and paper using elemental chlorine free and total chlorine free bleaching processes. Ind Crops Prod 149:112316. https://doi.org/10.1016/j.indcrop.2020.112316

    Article  CAS  Google Scholar 

  30. Midhun Dominic CD, Raj V, Neenu KV et al (2022) Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum). Int J Biol Macromol 206:92–104. https://doi.org/10.1016/j.ijbiomac.2022.02.078

    Article  CAS  PubMed  Google Scholar 

  31. Perrin J, Vuorinen T, Ferro EI (2021) Industrial crops & products sustainable bleaching of Eucalyptus sp . kraft pulp with hypochlorous acid , ozone and hydrogen peroxide. Ind Crops Prod 172. https://doi.org/10.1016/j.indcrop.2021.114004

  32. Chattopadhyay SN, Pan NC, Roy AN, Samanta KK (2022) Low temperature bleaching of jute using peracetic acid: a novel process. AATCC J Res 9:98–105. https://doi.org/10.1177/24723444221081458

    Article  CAS  Google Scholar 

  33. Chattopadhyay SN, Samanta KK, Ammayappan L, Ghosh RK (2023) Peracetic acid bleaching of banana fibre: process optimisation. Color Technol. https://doi.org/10.1111/cote.12681

  34. Echeverria D, Venditti R, Jameel H, Yao Y (2021) A general life cycle assessment framework for sustainable bleaching : a case study of peracetic acid bleaching of wood pulp. J Clean Prod 290:125854. https://doi.org/10.1016/j.jclepro.2021.125854

    Article  CAS  Google Scholar 

  35. Liang T, Wang L (2015) An environmentally safe and nondestructive process for bleaching birch veneer with peracetic acid. J Clean Prod 92:37–43. https://doi.org/10.1016/j.jclepro.2014.12.087

    Article  CAS  Google Scholar 

  36. Ibrahim NA, Sharaf SS, Hashem MM (2010) A novel approach for low temperature bleaching and carbamoylethylation of cotton cellulose. Carbohydr Polym 82:1248–1255. https://doi.org/10.1016/j.carbpol.2010.06.059

    Article  CAS  Google Scholar 

  37. Abdel-Halim ES, Al-Deyab SS (2011) Low temperature bleaching of cotton cellulose using peracetic acid. Carbohydr Polym 86:988–994. https://doi.org/10.1016/j.carbpol.2011.05.051

    Article  CAS  Google Scholar 

  38. Križman P, Kovač F, Forte Tavčer P (2005) Bleaching of cotton fabric with peracetic acid in the presence of different activators. Color Technol 121:304–309. https://doi.org/10.1111/j.1478-4408.2005.tb00373.x

    Article  Google Scholar 

  39. El SA, Fouda MMG, Hashem M (2009) One-step process for bio-scouring and peracetic acid bleaching of cotton fabric. Carbohydr Polym 78:302–308. https://doi.org/10.1016/j.carbpol.2009.04.002

    Article  CAS  Google Scholar 

  40. Usluoglu A, Arabaci G (2014) Bleaching of cotton / polyamide fabrics with enzymes and peracetic acid:364–367. https://doi.org/10.1002/apj

  41. Ramos E, De Torre MJ, Pe I (2008) Bleaching of soda pulp of fibres of Musa textilis nee ( abaca ) with peracetic acid. Bioresource Technol 99:1474–1480. https://doi.org/10.1016/j.biortech.2007.01.061

    Article  CAS  Google Scholar 

  42. Gedik G, Avinc O (2018) Bleaching of hemp (Cannabis sativa L.) fibers with peracetic acid for textiles industry purposes. Fibers Polymers 19:82–93. https://doi.org/10.1007/s12221-018-7165-0

    Article  CAS  Google Scholar 

  43. Marim BM, Mantovan J Giraldo GAG Environment-friendly process based on a combination of ultrasound and peracetic acid treatment to obtain cellulose from orange bagasse. Molecules. https://doi.org/10.1002/jctb.6576

  44. Suzana PCSF (2019) Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose 27. https://doi.org/10.1007/s10570-019-02893-0

  45. Smyth M, García A, Rader C et al (2017) Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind Crops Prod 108:257–266. https://doi.org/10.1016/j.indcrop.2017.06.006

    Article  CAS  Google Scholar 

  46. Ventura-Cruz S, Flores-Alamo N, Tecante A (2020) Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide. Int J Biol Macromol 155:324–329. https://doi.org/10.1016/j.ijbiomac.2020.03.222

    Article  CAS  PubMed  Google Scholar 

  47. Girard M, Vidal D, Bertrand F et al (2021) Evidence-based guidelines for the ultrasonic dispersion of cellulose nanocrystals. Ultrason Sonochem 71. https://doi.org/10.1016/j.ultsonch.2020.105378

  48. TAPPI (2007) Solvent extractives of wood and pulp. T 204 cm-97 1–12. https://doi.org/10.5772/916

  49. Tappi (2011) Lignin in wood and pulp. T222 Om-02 1–7

  50. Ait Benhamou A, Boussetta A, Kassab Z et al (2021) Investigating the characteristics of cactus seeds by-product and their use as a new filler in phenol formaldehyde wood adhesive. Int J Adhes Adhes 110. https://doi.org/10.1016/j.ijadhadh.2021.102940

  51. Wise LE, Maxine M, Adieco AAD (1946) A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade Journal 2:35–43

    Google Scholar 

  52. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM (2019) Extraction, chemical composition, and characterization of potential lignocellulosic biomasses and polymers from corn plant parts. Bioresources 14:6485–6500. https://doi.org/10.15376/biores.14.3.6485-6500

    Article  CAS  Google Scholar 

  53. Mendes CADC, Ferreira NMS, Furtado CRG, De Sousa AMF (2015) Isolation and characterization of nanocrystalline cellulose from corn husk. Mater Lett 148:26–29. https://doi.org/10.1016/j.matlet.2015.02.047

    Article  CAS  Google Scholar 

  54. Jat AKSL, Yadav RKOP (2013) Maize production systems for improving resource-use efficiency and livelihood security, 1st edn, New Delhi

  55. Sharma N, Bhardwaj NK, Singh RBP (2020) Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: a review. J Clean Prod 256:120338. https://doi.org/10.1016/j.jclepro.2020.120338

    Article  CAS  Google Scholar 

  56. Mondal MIH, Yeasmin MS, Rahman MS (2015) Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. Int J Biol Macromol 79:144–150. https://doi.org/10.1016/j.ijbiomac.2015.04.061

    Article  CAS  PubMed  Google Scholar 

  57. Merci A, Urbano A, Victória M et al (2015) Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. FRIN 73:38–43. https://doi.org/10.1016/j.foodres.2015.03.020

    Article  CAS  Google Scholar 

  58. Chen Z, Li P, Ji Q et al (2023) All-polysaccharide composite films based on calcium alginate reinforced synergistically by multidimensional cellulose and hemicellulose fractionated from corn husks. Mater Today Commun 34:105090. https://doi.org/10.1016/j.mtcomm.2022.105090

    Article  CAS  Google Scholar 

  59. Katakojwala R, Mohan SV (2020) Microcrystalline cellulose production from sugarcane bagasse : sustainable process development and life cycle assessment. J Clean Prod 249:119342. https://doi.org/10.1016/j.jclepro.2019.119342

    Article  CAS  Google Scholar 

  60. Yilmaz ND (2013) Effect of chemical extraction parameters on corn husk fibres characteristics. Indian J Fibre Text Res 38:29–34

    CAS  Google Scholar 

  61. Yang X, Han F, Xu C et al (2017) Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Ind Crops Prod 109:241–247. https://doi.org/10.1016/j.indcrop.2017.08.032

    Article  CAS  Google Scholar 

  62. Huamani-Palomino RG, Oliveira G, Kock FVC, Venâncio T, Córdova BM (2023) Structural elucidation of pectin extracted from cocoa pod husk (Theobroma Cacao L.): evaluation of the degree of esterification using FT-IR and 1H NMR. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-04082-3

  63. Maheswari CU, Reddy KO, Muzenda E et al (2012) Extraction and characterization of cellulose microfibrils from agricultural residue e Cocos nucifera L. Biomass Bioenergy 46:555–563. https://doi.org/10.1016/j.biombioe.2012.06.039

    Article  CAS  Google Scholar 

  64. Córdova BM, Santa Cruz JP, Ocampo TVM, Huamani-Palomino RG, Baena-Moncada AM (2020) Simultaneous adsorption of a ternary mixture of brilliant green, rhodamine B and methyl orange as artificial wastewater onto biochar from cocoa pod husk waste. Quantification of dyes using the derivative spectrophotometry method. New J Chem 44:8303–8316. https://doi.org/10.1039/D0NJ00916D

    Article  Google Scholar 

  65. Tahir MH, Zhao Z, Ren J et al (2019) Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenergy 122:193–201. https://doi.org/10.1016/j.biombioe.2019.01.009

    Article  CAS  Google Scholar 

  66. Szcześniak L, Rachocki A, Tritt-Goc J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451. https://doi.org/10.1007/s10570-007-9192-2

    Article  CAS  Google Scholar 

  67. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  68. de Paula PT, da Costa JS, Scatolino MV et al (2022) Revealing the influence of chemical compounds on the pyrolysis of lignocellulosic wastes from the Amazonian production chains. Int J Environ Sci Technol 19:4491–4508. https://doi.org/10.1007/s13762-021-03416-w

    Article  CAS  Google Scholar 

  69. Kian LK, Jawaid M, Ariffin H, Alothman OY (2017) Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol 103:931–940. https://doi.org/10.1016/j.ijbiomac.2017.05.135

    Article  CAS  PubMed  Google Scholar 

  70. Abdelhamid HN, Mathew AP (2022) Cellulose-based nanomaterials advance biomedicine: a review. Int J Mol Sci 23:5405. https://doi.org/10.3390/ijms23105405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Castellan A, Ruggiero R, Frollini E et al (2007) Studies on fluorescence of cellulosics. Holzforschung 61:504–508. https://doi.org/10.1515/HF.2007.090

    Article  CAS  Google Scholar 

  72. Mazumder A, Holdt SL, De Francisci D et al (2016) Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J Appl Phycol 28:3625–3634. https://doi.org/10.1007/s10811-016-0872-x

    Article  CAS  Google Scholar 

  73. Phanthong P, Reubroycharoen P, Hao X et al (2018) Nanocellulose: extraction and application. Carbon Resour Conversion 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  74. Chawla P, Sridhar K, Kumar A et al (2023) Production of nanocellulose from corn husk for the development of antimicrobial biodegradable packaging film. Int J Biol Macromol 242:124805. https://doi.org/10.1016/j.ijbiomac.2023.124805

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by PROCIENCIA through the Project No. 204-FONDECYT-2020.

Author information

Authors and Affiliations

Authors

Contributions

Sergio Mayta: original idea, experimental part, and methodology. Ronny G. Huamani-Palomino: writing—original draft, review and editing, and aided in interpreting the results. Bryan M. Córdova: conceptualization, discussions, review, supervision, and editing. Ernesto Rivera: formal analysis, review, and validation. María Quintana: project administration, funding acquisition, supervision, review, and resources.

Corresponding author

Correspondence to Ronny G. Huamani-Palomino.

Ethics declarations

Ethics approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1300 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayta, S., Huamani-Palomino, R.G., Córdova, B.M. et al. Utilizing peracetic acid as an eco-friendly bleaching agent: investigating whiteness levels of cellulose microfibers from corn husk waste. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05373-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05373-z

Keywords

Navigation