Skip to main content
Log in

Introspect of prying out silica from agricultural wastes by various methods and incorporating them in distinct uses

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The flaring out of silica nanoparticles from agricultural wastes had distorted the classical barriers in its synthesis process. Silica-rich effluvia like rice husk, corn cob, sugarcane bagasse, palm ash, coconut fiber, bamboo leaves, and tapioca were conceded as frugal precursors to invoke silica nanoparticles. The layout, appearance, porosity, and size of SNPs can all be changed by tailoring the processing constants during synthesis. In order to determine whether leftovers from agriculture may be used as a source of silica precursors, these properties and the SNPs’ relevant uses are being studied. Adsorption incorporating agricultural and alimentary wastes, when modified with acidic, alkaline, and other chemical solvents, has shown a higher absorption rate than the usual approach because of the presence of functional groups. This retrospective rehashes the extraction of silica from assorted agricultural wastes like rice husk, bamboo, and sugarcane bagasse in the first part, and their pragmatic role in different applications is discussed in the second part. Finally, issues that need to be resolved were addressed for future research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A Nouailhat (2008) An introduction to nanoscience and nanotechnology, Paris, France. ISBN: 9780470610954. https://doi.org/10.1002/9780470610954

  2. Rajaram P, Jeice AR, Jayakumar K (2023) 2023 Review of green synthesized TiO2 nanoparticles for diverse applications. Surf Interfaces 39:102912–102929

    Article  CAS  Google Scholar 

  3. VH Rathi, AR Jeice (2023) Green-fabrication of CuO nanoparticles using various plant extracts and their multifaceted applications in photocatalytic cationic dye degradation and antimicrobial activities. Biomass Convers Biorefin 1-12. https://doi.org/10.1007/s13399-023-04350-2

  4. M Aswin, AR Jeice (2023) Photocatalytic activity of green fabricated CuO bionanoparticles using Tridax procumbens leaves extracted in divergent medium with antimicrobial facets. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-05144-2

  5. P Rajaram, AR Jeice, K Jayakumar (2023) Influences of calcination temperature on titanium dioxide nanoparticles synthesized using Averrhoa carambola leaf extract: in vitro antimicrobial activity and UV-light catalyzed degradation of textile wastewater. Biomass Convers. Biorefin 1–14. https://doi.org/10.1007/s13399-023-04212-x

  6. Rathi VH, Jeice AR (2023) Green fabrication of titanium dioxide nanoparticles and their applications in photocatalytic dye degradation and microbial activities. Chem Phys Impact 6:100197

    Article  Google Scholar 

  7. Rathi VH, Jeice AR, Jayakumar K (2023) Green synthesis of Ag/CuO and Ag/ TiO2 nanoparticles for enhanced photocatalytic dye degradation, antibacterial, and antifungal properties. Appl Surf Sci Adv 18:100476

    Article  Google Scholar 

  8. Rajaram P, Samson Y, Jeice AR (2023) Synthesis of Cd(OH)2-CdO nanoparticles using Veldt grape leaf extract: enhanced dye degradation and microbial resistance. BioNanoScience 13:1289–1307

    Article  Google Scholar 

  9. Rathi VH, Jeice AR (2023) Characterization of Ag nanoparticles synthesized from Caesalpinia pulcherrima flower, Nervilia aragoana leaf, and Manihot esculenta peel extracts: antibacterial, antifungal, and photocatalytic properties. Chem Pap. https://doi.org/10.1007/s11696-023-03202-7

    Article  Google Scholar 

  10. Rajaram P, Jeice AR, Jayakumar K (2023) Green synthesis of orthorhombic Mn2O3 nanoparticles; influence of the oxygen vacancies on antimicrobial activity and cationic dye degradation. New J Chem 47:17734–17745

    Article  CAS  Google Scholar 

  11. Abbas S, Mohamed MA (2009) The recent advances in the nanotechnology and its applications in food processing: a review “Journal of Food. Agric Environ 7(3&4):14–17

    CAS  Google Scholar 

  12. Malik S, Muhammad K, Waheed Y (2023) Nanotechnology: a revolution in modern industry. Molecules 28(2):66. https://doi.org/10.3390/molecules28020661

    Article  CAS  Google Scholar 

  13. Mebert A, Baglole JC, Desimone FM, Maysinger D (2017) Nanoengineered silica: properties, applications and toxicity. Food Chem Toxicol 109(Pt 1):753–770. https://doi.org/10.1016/j.fct.2017.05.054

    Article  CAS  PubMed  Google Scholar 

  14. Prabha D, Rajendran S, Lichtfouse E (2021) Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. Environ Chem Lett 19:1667–1691

    Article  CAS  PubMed  Google Scholar 

  15. Holleman, A Frederik, W Egon (2001) Crystalline forms of SiO2. Wiberg Nils (ed), Inorganic Chemistry, translated by Eagleson Mary; Brewer, William, San Diego: Academic Press/De Gruyter, ISBN 0–12–352651–5

  16. Laskowski L, Laskowska M, Vila N, Alain MS (2019) Mesoporous silica-based materials for electronics-oriented applications. Molecules 24:2395. https://doi.org/10.3390/molecules24132395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pavesi L (2008) Silicon-based light sources for silicon integrated circuits. Adv Opt Technol Article ID 416926 https://doi.org/10.1155/2008/416926 / 2008

  18. Debnath NK, Pabbisetty VH, Sarkar K, Singh A, Majhi MR, Singh VK (2022) Preparation and characterization of semi-silica insulation refractory by utilizing lignite fly ash waste materials. SSRN J. https://doi.org/10.2139/ssrn.4060022

    Article  Google Scholar 

  19. A Balandis, D Nizeviciene (2011) Silica crown refractory corrosion in glass melting furnaces. Sci Sinter 43(3). https://doi.org/10.2298/SOS1103295B

  20. Selvapriya R (2019) Silica fumes as partial replacement of cement in concrete. Int Res J Multidiscip Tech (IRJMT) 1(6):325–333. https://doi.org/10.34256/irjmtcon43

    Article  Google Scholar 

  21. Urmi SA, Islam S, Islam M, Rahman (2020) Manufacturing & characterization of glass samples with three different sources of silica: possible alternatives for quartz in glass manufacturing. In: Conference: International Conference on Materials, Energy, Environment and Engineering (ICMEEE). ICMEEE-PI-580

  22. Pal N, Lee J-H, Cho E-B, Cho E-B (2020) Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials 10(11):2122. https://doi.org/10.3390/nano10112122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen Y (2017) Rice husk silica derived nanomaterials for sustainable application. Renew Sustain Energy Rev 80:453–466. https://doi.org/10.1016/j.rser.2017.05.115

    Article  Google Scholar 

  24. Lee JH, Kwon JH, Lee JW, Lee HS, Chang JH, Sang BI (2017) Preparation of high purity silica originated from rice husks by chemically removing metallic impurities. J Ind Eng Chem 50:79–85. https://doi.org/10.1016/j.jiec.2017.01.033

    Article  CAS  Google Scholar 

  25. Fernandes IJ, Calheiro D, Kieling AG, Moraes CA, Rocha TL, Brehm FA, Modolo RC (2016) Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165:351–359. https://doi.org/10.1016/j.fuel.2015.10.086

    Article  CAS  Google Scholar 

  26. Beidaghy Dizaji H, Zeng T, Hartmann I, Enke D, Schliermann T, Lenz V, Bidabadi M (2019) Generation of high quality biogenic silica by combustion of rice husk and rice straw combined with pre-and post- treatment strategies -review. Appl Sci 9:1083. https://doi.org/10.3390/app9061083

    Article  CAS  Google Scholar 

  27. Amirhossein Zareihassangheshlaghi, Hossein Beidaghy Dizaji, Thomas Zeng, Paula Huth, Thomas Ruf, Reinhard Denecke, Dirk Enke (2020) The behaviour of metal impurities on surface and bulk of biogenic silica from rice husk combustion and their impact on ash melting tendency. ACS Sustain Chem Eng 1–26. https://doi.org/10.1021/acsuschemeng.0c01484

  28. Kamari S, Ghorbani F (2021) Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM–41. Biomass Conv Bioref 11:3001–3009. https://doi.org/10.1007/s13399-020-00637-w

    Article  CAS  Google Scholar 

  29. Trinh LTP, Lee YJ, Lee JW, Lee HJ (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8. https://doi.org/10.1016/j.biombioe.2015.05.005

    Article  CAS  Google Scholar 

  30. Zhang H, Ding X, Chen X, Ma Y, Wang Z, Zhao X (2015) A new method of utilizing rice husk: consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. J Hazard Mater 291:65–73

    Article  CAS  PubMed  Google Scholar 

  31. Yuvakkumar R, Elango V, Rajendran V, Kannan N (2014) High-purity nano silica powder from rice husk using a simple chemical method. J Exp Nanosci 9(3):272–281. https://doi.org/10.1080/17458080.2012.656709

    Article  CAS  Google Scholar 

  32. Nassar MY, Ahmed IS, Raya MA (2019) A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J Mol Liq 282:251–263. https://doi.org/10.1016/j.molliq.2019.03.017

    Article  CAS  Google Scholar 

  33. Ghorbani F, Sanati AM, Maleki M (2015) Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environ Stud Persian Gulf 2:56–65

    Google Scholar 

  34. Chun J, Lee JH (2020) Recent progress on the development of engineered silica particles derived from rice husk. Sustainability 12:10683. https://doi.org/10.3390/su122410683

    Article  CAS  Google Scholar 

  35. Umeda J, Kondoh K (2008) Process optimization to prepare high-purity amorphous silica from rice husks via citric acid leaching treatment. Trans JWRI 37:13–17

    CAS  Google Scholar 

  36. Shen J, Liu X, Zhu S, Zhang H, Tan J (2011) Effects of calcination parameters on the silica phase of original and leached rice husk ash. Mater Lett 65:1179–1183. https://doi.org/10.1016/j.matlet.2011.01.034

    Article  CAS  Google Scholar 

  37. Adam F, Chew TS, Andas J (2011) A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. J Sol-Gel Sci Technol 59:580–583. https://doi.org/10.1007/s10971-011-2531-7

    Article  CAS  Google Scholar 

  38. Athinarayanan J, Vaiyapuri SP, Alhazmi M, Alatiah KA, Alshatwi AA (2015) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41:275–281. https://doi.org/10.1016/j.ceramint.2014.08.069

    Article  CAS  Google Scholar 

  39. Chindaprasirt P, Rattanasak U (2020) Eco-production of silica from sugarcane bagasse ash for use as photochromic pigment filler. Sci Rep 10(1):9890. https://doi.org/10.1038/s41598-020-66885-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ntalane Seroka S, Taziwa R, Khotseng L (2023) Nanostructured silicon derived from an agricultural residue bagasse ash via magnesiothermic reduction method. Coatings 13(2):221. https://doi.org/10.3390/coatings13020221

    Article  CAS  Google Scholar 

  41. Bahurudeen A, Santhanam MJ (2015) Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Composites 56:32–45. https://doi.org/10.1016/j.cemconcomp.2014.11.002

    Article  CAS  Google Scholar 

  42. Embong R, Shafiq N, Kusbiantoro A, Nuruddin MF (2016) Effectiveness of low concentration acid and solar drying as pre-treatment features for producing pozzolanic sugarcane bagasse ash. J Cleaner Prod 112:953–962

    Article  CAS  Google Scholar 

  43. Zaheer MM, Tabish M (2023) The durability of concrete made up of sugar cane bagasse ash (SCBA) as a partial replacement of cement: a review. Arabian J Sci Eng 48:4195–4225. https://doi.org/10.1007/s13369-023-07698-9

    Article  Google Scholar 

  44. Luyza Bortolotto Teixeira, Elisangela Guzi de Moraes, Giovanna Paolinelli Shinhe, Gilberto Falk & Antonio Pedro Novaes de Oliveira (2021) Obtaining biogenic silica from sugarcane bagasse and leaf ash. Waste Biomass Valorization 12:3205–3221. https://link.springer.com/article/https://doi.org/10.1007/s12649-02001230-y

  45. Falk G, Shinhe GP, Teixeira LB, Moraes EG, de Novaes APO (2019) Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions. Ceram Int 45(17):21618–21624. https://doi.org/10.1016/j.ceramint.2019.07.157

    Article  CAS  Google Scholar 

  46. Khan MI, Sayyed MAA, Ali MMA (2021) Examination of cement concrete containing micro silica and sugarcane bagasse ash subjected to sulphate and chloride attack. Mater Today Proc 39:558–562. https://doi.org/10.1016/j.matpr.2020.08.468

    Article  CAS  Google Scholar 

  47. AlZubi AA, Devarapu SR, Moghrabi HA, Govindarajan SK, Dora (2023) Synthesis of porous, hydrophobic aerogel through the reinforcement of bamboo-shaped oxidized multi-walled carbon nanotubes in the silica matrix for oil spill cleaning. Clean Technol Environ Policy 25:2025–2037. https://doi.org/10.1007/s10098-023-02487-2

    Article  CAS  Google Scholar 

  48. Lucas Henrique Pereira Silva, Fabio Friol Guedes de Paiva, Jacqueline Roberta Tamashiro, Maryane Pipino Beraldo de Almeida, Vitor Peixoto Klienchen de Maria, Vivian Monise Alves de Oliveira Angela Kinoshita (2023) Bamboo as a sustainable building material part of the environmental footprints and eco-design of products and processes book series (EFEPP). 2345–7651. https://doi.org/10.1007/978-981-99-0232-3

  49. Zhang B, Zhong Z, Tang J, Ye J, Ye F, Zhang Z, Liu Q (2023) Ultra-light 3D bamboo-like SiC nanowires felt for efficient microwave absorption in the low-frequency region. Ceram Int 49(4):6368–6377. https://doi.org/10.1016/j.ceramint.2022.10.143

    Article  CAS  Google Scholar 

  50. Sharma P, Kherb J, Prakash J, Kaushal R (2021) A novel and facile green synthesis of SiO2 nanoparticles for removal of toxic water pollutants. Appl Nanosci 13:735–747. https://doi.org/10.1007/s13204-021-01898-1

    Article  ADS  CAS  Google Scholar 

  51. Ramli Y, Steven S, Restiawaty E, Bindar Y (2022) Simulation study of bamboo leaves valorization to small-scale electricity and bio-silica using ASPEN plus. Bio Energy Res 15:1918–1926. https://doi.org/10.1007/s12155-022-10403-7

    Article  CAS  Google Scholar 

  52. RS Aashikha Shani, A Rejo Jeice (2023) Articulate synthesis of nano silica from coconut fibre by precipitation method. National Conference on Advances in materials Science. ISBN: No. 978–93–5811–124–8

  53. Balamurugan M, Saravanan S (2012) Producing nanosilica from sorghum vulgare seed heads. Powder Technol 224:345–350. https://doi.org/10.1016/j.powtec.2012.03.017

    Article  CAS  Google Scholar 

  54. Joabel Raabe, Alessandra de Souza Fonseca, Lina Bufalino, Caue Ribeiro, Maria Alice Martins, Jose Manoel Marconcini, Lourival M. Mendes and Gustavo Henrique Denzin Tonoli (2015) Biocomposite of cassava starch reinforced with cellulose pulp fibers modified with deposition of silica (SiO2) nanoparticles. J Nanomater Article ID 493439. https://doi.org/10.1155/2015/493439

  55. Anuar MF, Fen YW, Azizan MZ, Rahmat F, Zaid MHM, Khaidir REM, Omar NAS (2021) Sustainable production of arecanut husk ash as potential silica replacement for synthesis of silicate-based glass-ceramics materials. Materials 14:1141. https://doi.org/10.3390/ma14051141

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. EA Okoronkwo, PE Imoisili, SO Olusunle (2013) Extraction and characterization of amorphous silica from corn cob ash by sol-gel method. Chem Mater Res. ISSN 2224- 3224 (Print) ISSN 2225- 0956 3(4)

  57. Pa FC, Chik A, Bari F (2016) Palm ash as an alternative source for silica production. MATEC Web Conf 7:01062. https://doi.org/10.1051/matecconf/20167801062

    Article  CAS  Google Scholar 

  58. Piela A, Rodak, Duda M (2020) Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing. Bioorg Chem 99:103773

    Article  CAS  PubMed  Google Scholar 

  59. Imoisili PE, Nwanna EC, Jen T-C (2022) Facile preparation and characterization of silica nanoparticles from South Africa fly ash using a sol–gel hydrothermal method. Processes 10(11):2440. https://doi.org/10.3390/pr10112440

    Article  CAS  Google Scholar 

  60. Lyle A, Kheswa N, Ntalane Seroka S, Khotseng L (2023) Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash – a mini review. (Review Article) RSC Adv 13:1370–1380. https://doi.org/10.1039/D2RA07490G

    Article  Google Scholar 

  61. Maeng SH, Lee H, Park MS, Jeong J, Kim S (2020) Ultrafast carbothermal reduction of silica to silicon using a CO2 laser beam. Sci Rep 10(1):21730. https://doi.org/10.1038/s41598-020-78562-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mochidzuki K, Sakoda A, Suzuki M, Izumi J, Tomonaga N (2001) Structural behavior of rice husk silica in pressurized hot-water treatment processes. Ind Eng Chem Res 40:5705–5709

    Article  CAS  Google Scholar 

  63. Huang M, Cao J, Meng X, Liu Y, Ke W, Wang J, Sun L (2016) Preparation of SiO2 nanowires from rice husks by hydrothermal method and the RNA purification performance. Chem Phys Lett 662:42–46. https://doi.org/10.1016/j.cplett.2016.09.012

    Article  ADS  CAS  Google Scholar 

  64. Bathla A, Narula C, Chauhan (2018) Hydrothermal synthesis and characterization of silica nanowires using rice husk ash: an agricultural waste. J Mater Sci: Materials in Electronics 29:6225–6231. https://doi.org/10.1007/s10854-018-8598-y

    Article  CAS  Google Scholar 

  65. GG Pangesti, KD Pandiangan, W Simanjuntak, S Sascori, M Rilyanti (2020) Synthesis of zeolite-Y from rice husk silica and food grade aluminum foil using modified hydrothermal method. ICASMI 2020 J Phys: Conference Series 1751 012089 IOP Publishing. https://doi.org/10.1088/1742-6596/1751/1/012089

  66. Sudarman S, Andriayani T, Taufik M (2023) Synthesis and application of nano-silicon prepared from rice husk with the hydrothermal method and its use for anode lithium-ion batteries. Mater Sci Energy Technol 7:1–8. https://doi.org/10.1016/j.mset.2023.07.003

    Article  CAS  Google Scholar 

  67. P Ehi Imoisili, T-C Jen (2021) Facile extraction and characterization of silica nanoparticles from corn stalk by sol gel hydrothermal methods. International Conference on Engineering for Sustainable World (ICESW 2020) IOP Conf. Series: Materials Science and Engineering 1107- 012030 IOP Publishing. https://doi.org/10.1088/1757-899X/1107/1/012030

  68. Wongso V, Sambudi NS, Sufian S, Isnaeni (2021) The effect of hydrothermal conditions on photoluminescence properties of rice husk-derived silica-carbon quantum dots for methylene blue degradation. Biomass Convers Biorefinery 11:2641–2654. https://doi.org/10.1007/s13399-020-00662-9

    Article  CAS  Google Scholar 

  69. Irzamana, Irmansyaha, Siti Aisyaha, Nazopatul Patonah Hara, Aminullahb (2022) International Journal of Renewable Energy Development Effect of Different Hydrothermal Temperatures on the Properties on Nano-Silica (SiO2) of Rice Husk. ISSN: 2252–490 https://doi.org/10.14710/ijred.2022.43904

  70. Mahalingam V, Sivaraju M (2023) Microwave-assisted sol-gel synthesis of silica nanoparticles using rice husk as a precursor for corrosion protection application. Silicon 15:1967–1975. https://doi.org/10.1007/s12633-022-02153-0

    Article  CAS  Google Scholar 

  71. Franco A, De S, Balu A, Romero A, Luque R (2018) Integrated mechanochemical/microwave-assisted approach for the synthesis of biogenic silica-based catalysts from rice husk waste. ACS Sustain Chem Eng 6(9):11555–11562. https://doi.org/10.1021/acssuschemeng.8b01738

    Article  CAS  Google Scholar 

  72. R Nagahata, Y Mori, Y Saito, Kazuhiko, R Benioub, Yoshifumi, M Shimizu (2022) Microwave-assisted carbothermal reduction of rice hull ash to biogenic silicon. Biores Technol Rep 101173. https://doi.org/10.1016/j.biteb.2022.101173

  73. Araichimani P, Prabu KM, SureshKumar G, Gopalu Karunakaran N, VanMinh S, Karthi EKG, Kolesnikov E (2020) Rare-earth ions integrated silica nanoparticles derived from rice husk via microwave-assisted combustion method for bioimaging applications. Ceram Int 46:18366–18372. https://doi.org/10.1016/j.ceramint.2020.04.125

    Article  CAS  Google Scholar 

  74. K Bunmai, N Osakoo, K Deekamwong, W Rongchapo, Keawku, N Chanlek, S Prayoon, J Wittayakun (2018) Extraction of Silica from cogon grass and utilization for synthesis of Zeolite NaY by conventional and microwave – assisted hydrothermal methods. J Taiwan Inst Chem Eng 152–158. https://doi.org/10.1016/j.jtice.2017.11.024

  75. B Kumar, K Smita, B Kumar, L Cumbal, G Rosero (2014) Microwave-assisted extraction and solid-phase separation of quercetin from solid onion (Allium cepa L.). Separation Science and Technology, 49: 2502–2509, Copyright © Taylor & Francis Group, LLC ISSN: 0149–6395 print / 1520–5754. https://doi.org/10.1080/01496395.2014.933982

  76. Sapawe N, Osman NS, Zakaria MZ, Fikry SASSM, Aris MAM (2018) Synthesis of green silica from agricultural waste by sol-gel method. Mater Today Proc 10(2):21861–21866. https://doi.org/10.1016/j.matpr.2018.07.043

    Article  CAS  Google Scholar 

  77. Durairaj K, Senthilkumar P, Velmurugan P, Dhamodaran K, Kadirvelu K, Kumaran S (2019) Sol-gel mediated synthesis of silica nanoparticle from Bambusa vulgaris leaves and its environmental applications: kinetics and isotherms studies. J Sol-Gel Sci Technol 90:653–664. https://doi.org/10.1007/s10971-019-04922-7

    Article  CAS  Google Scholar 

  78. Soemphol W, Charee P, Audtarat S, Sompech S, Hongsachart P, Dasri T (2020) Characterization of a bacterial cellulose-silica nanocomposite prepared from agricultural waste products. Mater Res Express 7:015085. https://doi.org/10.1088/2053-1591/ab6c25

    Article  ADS  CAS  Google Scholar 

  79. Imoisili PE, Ukoba KO, Jen T-C (2020) Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol–gel. J Materrestechnol 9(1):307–313. https://doi.org/10.1016/j.jmrt.2019.10.059

    Article  CAS  Google Scholar 

  80. Le VH, Thuc CNH, Le HHT (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:58. https://doi.org/10.1186/1556-276X-8-58

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumari A, Singh RK, Kumari R, Monalisa SS (2023) Green synthesis and physical properties of crystalline silica engineering nanomaterial from rice husk (agriculture waste) at different annealing temperatures for its varied applications. J Indian Chem Soc 100(5):100982. https://doi.org/10.1016/j.jics.2023.100982

    Article  CAS  Google Scholar 

  82. Prempeh CO, Hartmann I, Formann S, Eiden M, Neubauer K, Atia H, Wotzka A, Wohlrab S, Nelles M (2023) Comparative study of commercial silica and sol-gel-derived porous silica from cornhusk for low-temperature catalytic methane combustion. Nanomaterials 13(9):1450. https://doi.org/10.3390/nano13091450

    Article  CAS  Google Scholar 

  83. Velmurugan P, Shim J, Lee K-J, Cho M, Lim S-S, Seo S, Cho K-M, Bang K-S, Byung-Taek Oh (2015) Extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method. J Ind Eng Chem 29:298–303. https://doi.org/10.1016/j.jiec.2015.04.009

    Article  CAS  Google Scholar 

  84. Ebisike K, Okoronkwo AE, Alaneme KK (2020) Synthesis and characterization of chitosan–silica hybrid aerogel using sol-gel method. J King Saud Univ Sci 32:550–554. https://doi.org/10.1016/j.jksus.2018.08.005

    Article  Google Scholar 

  85. Batchelor L (2012) Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon 4(4):259–266

    Article  CAS  Google Scholar 

  86. Mostofa MG, Rahman MM, Ansary MMU, Keya SS, Abdelrahman M, Miah MG, Phan Tran LS (2021) Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2021.1892582

    Article  PubMed  Google Scholar 

  87. P Goswami, J Mathur (2022) Application of agro-waste-mediated silica nanoparticles to sustainable agriculture. Biores Bioprocess 9. https://doi.org/10.1186/s40643-022-00496-5

  88. A Rastogi, DK Tripathi, S Yadav, DK Chauhan, M Ghorbanpour, NI El Sheery, M Brestic (2019) Application of silicon nanoparticles in agriculture. Biotech 9(3):1–11. http://refhub.elsevier.com/S2405-8440(22)01196-3/sref92

  89. Rajput VD, Minkina T, Feizi M, Kumari A, Khan M, Mandzhieva S, Sushkova S, El-Ramady H, Verma KK, Singhn A (2021) Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. Biology 10(8):791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elnahal AS, Saadony MT, Saad AM, Desoky SM, Tahan AM, Rady MM, AbuQamar SF, El-Tarabily KA (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 1–34. https://doi.org/10.1007/s10658-021-02393-7

  91. Goswami P, Mathur J (2019) Positive and negative effects of nanoparticles on plants and their applications in agriculture Plant Sci. Today 6(2):232–242

    CAS  Google Scholar 

  92. ME Khalifa, Ehab, A Abdelrahman, W Ibrahim (2019) Application of mesoporous silica nanoparticles modified with dibenzoylmethane as a novel composite for efficient removal of Cd(II), Hg(II), and Cu(II) ions from aqueous media. Published J Inorg Organomet Polym Mater Eng Chem https://doi.org/10.1007/s10904-019-01384-w, Corpus ID: 208020480

  93. Zhu K, Jia H, Wang F, Zhu Y, Wang C, Ma C (2017) Efficient removal of Pb (II) from aqueous solution by modified montmorillonite/carbon composite: equilibrium, kinetics, and thermodynamics. J Chem Eng Data 62:333–340

    Article  CAS  Google Scholar 

  94. Aghel B, Gouran A, Razmegir MH (2020) Use of modified Iranian clinoptilolite zeolite for cadmium and lead removal from oil refinery wastewater. Int J Environ Sci Technol 17:1239–1250

    Article  CAS  Google Scholar 

  95. Mokadem Z, Mekki S, Saïdi-Besbes S, Agusti G, Elaissari A, Derdour A (2017) Triazole containing magnetic core-silica shell nanoparticles for Pb2+, Cu2+ and Zn2+ removal. Arab J Chem 10:1039–1051

    Article  CAS  Google Scholar 

  96. Kamari S, Ghorbani F (2017) Synthesis of magMCM-41 with rice husk silica as cadmium sorbent from aqueous solutions: parameters’ optimization by response surface methodology. Environ Technol 38(12):1562–1579. https://doi.org/10.1080/09593330.2016.1237557

    Article  CAS  PubMed  Google Scholar 

  97. Kamari S, Ghorbani F, Sanati AM (2019) Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain Chem Pharm 13(2019):100153. https://doi.org/10.1016/j.scp.2019.100153

    Article  Google Scholar 

  98. Sanati AM, Kamari S, Ghorbani F (2019) Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf Interf 17:100374. https://doi.org/10.1016/j.surfin.2019.100374

    Article  CAS  Google Scholar 

  99. Ghorbani F, Kamari S (2019) Core–shell magnetic nanocomposite of Fe3O4@SiO2@NH2 as an efficient and highly recyclable adsorbent of methyl red dye from aqueous environments. Environ Technol Innov 14:100333. https://doi.org/10.1016/j.eti.2019.100333

    Article  Google Scholar 

  100. Xu P, Zeng G, Huang D, Yan M, Chen M, Lai C, Jiang H, Wu H, Chen G, Wan J (2017) Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb (II) from wastewater. J Taiwan Inst Chem Eng 71:165–173

    Article  CAS  Google Scholar 

  101. Kah M (2021) Comprehensive framework for human health risk assessment of nanopesticides. Nat Nanotechnol 16(9):955–964

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Xu Y (2021) Size effect of mesoporous silica nanoparticles on pesticide loading, release, and delivery in cucumber plants. Appl Sci 11(2):575

    Article  CAS  Google Scholar 

  103. Popat A (2012) Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 4(3):970–975

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    Article  CAS  Google Scholar 

  105. Li W, Peng J, Li H, Wu Z, Chang B, Guo X, Chen G, Wang X (2022) Architecture and performance of Si/C microspheres assembled by nano-Si via electro-spray technology as stability-enhanced anodes for lithium-ion batteries. J Alloys Compd 903:163940

    Article  CAS  Google Scholar 

  106. Hu L, Luo B, Wu C, Hu P, Wang L, Zhang H (2019) Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes. J Energy Chem 32:124–130

    Article  Google Scholar 

  107. Jiang H, Wang S, Shao Y, Wu Y, Shen J, Hao X (2019) Hollow triple-layer puff-like HCs@Si@C composites with high structural stability for high-performance lithium-ion battery. ACS Appl Energy Mater 2:896–904

    Article  CAS  Google Scholar 

  108. Mei Y, He Y, Zhu H, Ma Z, Yi P, Chen Z, Li P, He L, Wang W, Tang H (2023) Recent advances in the structural design of silicon/carbon anodes for lithium ion batteries: a review. Coatings 13:436. https://doi.org/10.3390/coatings13020436

    Article  CAS  Google Scholar 

  109. Keykhosravi A, Simjoo M (2019) Insights into stability of silica nanofluids in brine solution coupled with rock wet ability alteration: an enhanced oil recovery study in oil-wet carbonates Colloid. Surf Physicochem Eng Aspect 583:124008

    Article  CAS  Google Scholar 

  110. Dezfuli MG, Jafari A, Gharibshahi R (2020) Optimum volume fraction of nanoparticles for enhancing oil recovery by nanosilica/ supercritical CO2 flooding in porous medium. J Pet Sci Eng 185:106599

    Article  CAS  Google Scholar 

  111. Wu Y, Chen W, Dai C, Huang Y, Li H, Zhao M, He L, Jiao B (2017) Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery. J Pet Sci Eng 153:283–287

    Article  CAS  Google Scholar 

  112. Zhou Y, Wu X, Zhong X, Sun W, Pu H, Zhao JX (2019) Surfactant-augmented functional silica nanoparticle based nanofluid for enhanced oil recovery at high temperature and salinity. ACS Appl Mater Interf 11:45763–45775

    Article  CAS  Google Scholar 

  113. Lai N, Zhu Q, Qiao D, Chen K, Wang D, Tang L, Chen G (2020) CO2/N2 -responsive nanoparticles for enhanced oil recovery during CO2 flooding. Front Chem 8. https://doi.org/10.3389/fchem.2020.00393

  114. Agi A, Junin R, Jaafar MZ, Mohsin R, Arsad A, Gbadamosi A, Fung CK, Gbonhinbor J (2020) Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery. J Mater Res Technol 9:13054–13066. https://doi.org/10.1016/j.jmrt.2020.08.112

    Article  CAS  Google Scholar 

  115. Yang Y (2020) Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Acc Chem Res 53(8):1545–1556

    Article  CAS  PubMed  Google Scholar 

  116. Behzadi A, Mohammadi A (2020) Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery. J Nanoparticle Res 18(9):1–19. https://doi.org/10.1007/s11051-016-3580-1

    Article  CAS  Google Scholar 

  117. Sani NS (2017) Effect of mass concentration on bioactivity and cell viability of calcined silica aerogel synthesized from rice husk ash as silica source. J Sol Gel Sci Technol 82(1):120–132

    Article  CAS  Google Scholar 

  118. Nik AB, Zare H, Razavi S, Mohammadi H, Ahmadi PT, Yazdani N, Bayandori M, Rabiee N, Mobarakeh JI (2020) Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater 299:Article 110115

    Article  Google Scholar 

  119. Qindeel M, Ahmed N, Khan GM, Rehman AU (2019) Ligand decorated chitosan as an advanced nanocarrier for targeted delivery: a critical review. Nanomedicine 14:1623–1642

    Article  CAS  PubMed  Google Scholar 

  120. Yan T, He J, Liu R, Liu Z, Cheng J (2020) Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydr Polym 231:115706

    Article  CAS  PubMed  Google Scholar 

  121. Geng S, Qin L, He Y, Li X, Yang M, Li L, Liu D, Li Y, Niu D, Yang G (2021) Effective and safe delivery of GLP-1AR and FGF-21 plasmids using amino-functionalized dual-mesoporous silica nanoparticles in vitro and in vivo. Biomaterials 271:120763

    Article  CAS  PubMed  Google Scholar 

  122. Zhou S, Ding C, Wang C, Fu J (2020) UV-light cross-linked and pH de-cross-linked coumarin-decorated cationic copolymer grafted mesoporous silica nanoparticles for drug and gene co-delivery in vitro. Mater Sci Eng C Mater Biol Appl 108:Article 110469

    Article  PubMed  Google Scholar 

  123. Wagner J, Gobi D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hocevar S, Taskoparan B, Poller L, Datz S, Engelke H, Daali Y, Bein T, Bourquin C (2021) Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 15:4450–4466

    Article  CAS  PubMed  Google Scholar 

  124. Wang J, Li Z, Yin Y, Liu H, Tang G, Ma Y, Feng X, Mei H, Bi J, Wang K (2020) Mesoporous silica nanoparticles combined with MoS2 and FITC for fluorescence imaging and photothermal therapy of cancer cells. J Mater Sci 55:15263–15274

    Article  ADS  CAS  Google Scholar 

  125. Dhinasekaran D, Raj R, Rajendran AR, Purushothaman B, Subramanian B, Prakasarao A, Singaravelu G (2020) Chitosan mediated 5-fluorouracil functionalized silica nanoparticle from rice husk for anticancer activity. Int J Biol Macromol 156:969–980. https://doi.org/10.1016/j.ijbiomac.2020.04.098

    Article  CAS  PubMed  Google Scholar 

  126. Liuzzi S, Sanarica S, Stefanizzi P (2017) Use of agro-wastes in building materials in the Mediterranean area: a review. Energy Procedia 126:242–249

    Article  Google Scholar 

  127. Kamari S, Shahbazi A (2021) High–performance nanofiltration membrane blended by Fe3O4@SiO2–CS bio nano composite for efficient simultaneous rejection of salts/heavy metals ions/dyes with high permeability, retention increase and fouling decline. Chem Eng J 417:127930. https://doi.org/10.1016/j.cej.2020.127930

    Article  CAS  Google Scholar 

  128. Moraes JCB, Tashima M, Akasaki J, Melges JL, Monzo J, Borrachero M, Soriano L, Paya J (2017) Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Constr Build Mater 144:214–224

    Article  CAS  Google Scholar 

  129. Tchakoute HK, Tchinda Mabah D, Henning Ruscher C, Kamseu E, Andreola F, Bignozzi MC, Leonelli C (2020) Preparation of low-cost nano and microcomposites from chicken eggshell, nano-silica and rice husk ash and their utilisations as additives for producing geopolymer cements. J Asian Ceram Soc 8:149–161. https://doi.org/10.1080/21870764.2020.1718860

    Article  Google Scholar 

Download references

Acknowledgements

The research scholar Aashikha Shani R. S (Reg. No: 22113012132002) and author ARJ like to thank Department of Physics and Research Centre of Annai Velankanni College, Tholayavattam, for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

ASR carried out synthesis and characterization of silica and also helped in manuscript preparation. ARJ carried out the design of the whole study and carried out correction of the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ambrose Rejo Jeice.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aashikha Shani, R.S., Jeice, A.R. Introspect of prying out silica from agricultural wastes by various methods and incorporating them in distinct uses. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05360-4

Keywords

Navigation