Skip to main content
Log in

Lignin from oil palm biomass using deep eutectic solvent as carbon fibre precursor

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Carbon fibre is cost prohibitive due to fossil-based raw materials and the substantial energy needed for manufacturing. Although lignin-derived oil palm biomass has been synthesised, its fundamental properties render it an unsuitable carbon fibre precursor. This study aimed to obtain lignin-derived oil palm biomass (DES-L) using choline chloride (ChCl) and lactic acid (LA) at various molar ratios (1:2–1:10) and to evaluate its fundamental properties in relation to its viability as a carbon fibre precursor at different reaction times (3–6 h) and temperatures (130–170 °C). ChCl-based DES produced high DES-L yields (74.94–98.42%) and solubilities (49.42–66.12%), with comparable phenolic hydroxyl group content (1.37–6.53 mmol/g). A higher LA molar ratio provides more active protons, facilitating the proton-catalysed breakdown of lignin-polysaccharide complexes, resulting in higher solubility and yield. The high lignin purity (81.21–89.97%) demonstrates that ChCl-based DES effectively cleaves the lignin-carbohydrate linkages, resulting in low carbohydrate content but high particulate matter (6.46–14.33%) due to cellulose degradation. The inverse correlation between volatile matter (16.25–36.53%) and ash content (0.99–3.00%) was due to the formation of volatile macromolecules from the highly branched polymer structure of lignin. The low carbon content (42.88–56.83%) diminishes the carbonaceous nature of the DES-L. Lignin has a sufficiently high average molecular weight (2221–5980 g/mol) and glass transition temperature (72.62–80.87 °C) as a carbon fibre precursor. Overall, the lignin-derived oil palm biomass obtained in this study using ChCl-based DES demonstrated preliminary feasibility as a carbon fibre precursor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bengtsson A, Hecht P, Sommertune J, Ek M, Sedin M, Sjöholm E (2020) Carbon fibers from lignin–cellulose precursors: effect of carbonization conditions. ACS Sustainable Chem Eng 8:6826–6833. https://doi.org/10.1021/acssuschemeng.9b00108

    Article  Google Scholar 

  2. Umar M, Ji X, Kirikkaleli D, Alola AA (2021) The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth. J Cleaner Prod 285:124863. https://doi.org/10.1016/j.jclepro.2020.124863

    Article  Google Scholar 

  3. Qureshi Y, Ali U, Sher F (2021) Part load operation of natural gas fired power plant with CO2 capture system for selective exhaust gas recirculation. Appl Therm Eng 190:116808. https://doi.org/10.1016/j.applthermaleng.2021.116808

    Article  Google Scholar 

  4. Pérez S, Del Molino E, Barrio VL (2019) Modeling and testing of a milli-structured reactor for carbon dioxide methanation. Int J Chem React Eng 17:20180238. https://doi.org/10.1515/ijcre-2018-0238

    Article  Google Scholar 

  5. Rashid T, Taqvi SAA, Sher F, Rubab S, Thanabalan M, Bilal M, ul Islam B (2021) Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel 293:120485. https://doi.org/10.1016/j.fuel.2021.120485

    Article  Google Scholar 

  6. Tan YT, Ngoh GC, Chua ASM (2018) Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind Crops Prod 123:271–277. https://doi.org/10.1016/j.indcrop.2018.06.091

    Article  Google Scholar 

  7. Obasa VD, Olanrewaju OA, Gbenebor OP, Ochulor EF, Odili CC, Abiodun YO, Adeosun SO (2022) A review on lignin-based carbon fibres for carbon footprint reduction. Atmosphere 13:1605. https://doi.org/10.3390/atmos13101605

    Article  Google Scholar 

  8. Wang T, Jiang M, Yu X, Niu N, Chen L (2022) Application of lignin adsorbent in wastewater treatment: A review. Sep Purif Technol 302:122116. https://doi.org/10.1016/j.seppur.2022.122116

    Article  Google Scholar 

  9. Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A (2023) Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. Biotechnol Biofuels Bioprod 16:44. https://doi.org/10.1186/s13068-023-02295-2

    Article  Google Scholar 

  10. Martins-Vieira JC, Torres-Mayanga PC, Lachos-Perez D (2022) Hydrothermal processing of lignocellulosic biomass: an overview of subcritical and supercritical water hydrolysis. BioEnergy Res:1–22. https://doi.org/10.1007/s12155-022-10553-8

  11. Kelly-Yong TL, Lim S, Lee KT (2011) Gasification of oil palm empty fruit bunch fibers in hot compressed water for synthesis gas production. J Appl Sci 11:3563–3570. https://doi.org/10.3923/jas.2011.3563.3570

    Article  Google Scholar 

  12. Yong TLK, Matsumura Y (2012) Reaction kinetics of the lignin conversion in supercritical water. Ind Eng Chem Res 51:11975–11988. https://doi.org/10.1021/ie300921d

    Article  Google Scholar 

  13. Khalid KA, Ahmad AA, Yong TLK (2019) Study on the effect of reaction temperature, time, and solid loading on lignin from oil palm frond (OPF) under subcritical phenol conditions as a precursor for carbon fiber production. J Jpn Inst Energy 98:234–241. https://doi.org/10.3775/jie.98.234

    Article  Google Scholar 

  14. Khalid KA, Karunakaran V, Abd-Talib N, Pa’ee KF, Tong WY, Anuar MR, TLK Y (2020) Oil palm lignin under subcritical phenol conditions as precursor for carbon fibre production. Biomass Convers Biorefin 12:5505–5513. https://doi.org/10.1007/s13399-020-01051-y

    Article  Google Scholar 

  15. Karunakaran V, Abd-Talib N, Yong TLK (2020) Lignin from oil palm empty fruit bunches (EFB) under subcritical phenol conditions as a precursor for carbon fiber production. Mater Today Proc 31:100–105. https://doi.org/10.1016/j.matpr.2020.01.252

    Article  Google Scholar 

  16. New EK, Wu TY, Lee CBTL, Poon ZY, Loow YL, Foo LYW, Mohammad AW (2019) Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds. Process Saf Environ Prot 123:190–198. https://doi.org/10.1016/j.psep.2018.11.015

    Article  Google Scholar 

  17. Tan YT, Ngoh GC, Chua ASM (2019) Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour Technol 281:359–366. https://doi.org/10.1016/j.biortech.2019.02.010

    Article  Google Scholar 

  18. Smink D, Juan A, Schuur B, Kersten SR (2019) Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Ind Eng Chem Res 58:16348–16357. https://doi.org/10.1021/acs.iecr.9b03588

    Article  Google Scholar 

  19. Chen Z, Reznicek WD, Wan C (2018) Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour Technol 263:40–48. https://doi.org/10.1016/j.biortech.2018.04.058

    Article  Google Scholar 

  20. Bai Y, Zhang XF, Wang Z, Zheng T, Yao J (2022) Deep eutectic solvent with bifunctional Brønsted-Lewis acids for highly efficient lignocellulose fractionation. Bioresour Technol 347:126723. https://doi.org/10.1016/j.biortech.2022.126723

    Article  Google Scholar 

  21. Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Zhang X (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/C6GC01007E

    Article  Google Scholar 

  22. Sai YW, Lee KM (2019) Enhanced cellulase accessibility using acid-based deep eutectic solvent in pretreatment of empty fruit bunches. Cellulose 26:9517–9528. https://doi.org/10.1007/s10570-019-02770-w

    Article  Google Scholar 

  23. Tajuddin AM, Harun S, Sajab MS, Zubairi SI, Jahim JM, Markom M, Nor MTM, Abdullah MA Hashim N (2019) Influence of deep eutectic solvent (DES) pretreatment on various chemical composition of empty fruit bunch (EFB). Int J Eng Technol 8:266–274. https://doi.org/10.14419/ijet.v8i1.2.24913

  24. Baker FS, Griffith WL, Compere AL (2005) Low-cost carbon fibers from renewable resources. FY 2005 Process Report, pp 187–196

    Google Scholar 

  25. Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis. Lab Anal Proced 1617:65–71 Technical Report NREL/TP-510-42620

    Google Scholar 

  26. Zakis GF (1994) Functional Analysis of Lignins and their Derivatives. Tappi Press, Atlanta, GA, pp 43–49

    Google Scholar 

  27. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass. 1617:1–16 Technical Report NREL/TP-510-42618

  28. Luo J, Genco J, Cole BJ, Fort RC (2011) Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. BioRes 6:4566–4593. https://doi.org/10.15376/biores.6.4.4566-4593

    Article  Google Scholar 

  29. Li AL, Hou XD, Lin KP, Zhang X, Fu MH (2018) Rice straw pretreatment using deep eutectic solvents with different constituent molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J Biosci Bioeng 126:346–354. https://doi.org/10.1016/j.jbiosc.2018.03.011

    Article  Google Scholar 

  30. Harun S, Tajuddin AM, Latif AA, Mahmod SS, Sajab MS, Markom M, Jahim JM (2021) Insight into the deep eutectic solvent pretreatment of oil palm empty fruit bunches: effects of temperature, empty fruit bunch to solvent ratio, and time. BioRes 16:6313–6341. https://doi.org/10.15376/biores.16.3.6313-6341

    Article  Google Scholar 

  31. Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5. https://doi.org/10.1016/j.biortech.2016.07.026

    Article  Google Scholar 

  32. Yue X, Suopajärvi T, Sun S, Mankinen O, Mikkelson A, Huttunen H, Liimatainen H (2022) High-purity lignin fractions and nanospheres rich in phenolic hydroxyl and carboxyl groups isolated with alkaline deep eutectic solvent from wheat straw. Bioresour Technol 360:127570. https://doi.org/10.1016/j.biortech.2022.127570

    Article  Google Scholar 

  33. Lyu G, Li T, Ji X, Yang G, Liu Y, Lucia LA, Chen J (2018) Characterization of lignin extracted from willow by deep eutectic solvent treatments. Polymers 10:869. https://doi.org/10.3390/polym10080869

    Article  Google Scholar 

  34. Rashid T, Sher F, Rasheed T, Zafar F, Zhang S, Murugesan T (2021) Evaluation of current and future solvents for selective lignin dissolution–A review. J Mol Liq 321:114577. https://doi.org/10.1016/j.molliq.2020.114577

    Article  Google Scholar 

  35. Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using Protic Ionic Liquids and characterization. Ind Crops Prod 84:284–293. https://doi.org/10.1016/j.indcrop.2016.02.017

    Article  Google Scholar 

  36. Tan YT, Chua ASM, Ngoh GC (2020) Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products–A review. Bioresour Technol 297:122522. https://doi.org/10.1016/j.biortech.2019.122522

    Article  Google Scholar 

  37. Teh SS, Loh SK, Mah SH (2019) Development of choline-based deep eutectic solvents for efficient concentrating of hemicelluloses in oil palm empty fruit bunches. Korean J Chem Eng 36:1619–1625. https://doi.org/10.1007/s11814-019-0348-

    Article  Google Scholar 

  38. Ho MC, Wu TY, Chee SWQ, Ngang CY, Chew IML, Teoh WH, Md Jahim J, Mohammad AW (2019) An application of low concentration alkaline hydrogen peroxide at non-severe pretreatment conditions together with deep eutectic solvent to improve delignification of oil palm fronds. Cellulose 26:8557–8573. https://doi.org/10.1007/s10570-019-02646-z

    Article  Google Scholar 

  39. New EK, Wu TY, Voon KS, Procentese A, Shak KPY, Teoh WH, Md Jahim J (2021) A utilization of choline chloride-based deep eutectic solvent integrated with alkaline earth metal hexahydrate in the pretreatment of oil palm fronds. Ind Eng Chem Res 60:2011–2026. https://doi.org/10.1021/acs.iecr.0c05052

    Article  Google Scholar 

  40. Fernandes C, Melro E, Magalhães S, Alves L, Craveiro R, Filipe A, Valente AJ, Martins G, Antunes FE, Romano A, Medronho B (2021) New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust (Pinus pinaster Ait.). Int J Biol Macromol 177:294–305. https://doi.org/10.1016/j.ijbiomac.2021.02.088

    Article  Google Scholar 

  41. Hong S, Shen XJ, Xue Z, Sun Z, Yuan TQ (2020) Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation. Green Chem 22:7219–7232. https://doi.org/10.1039/D0GC02439B

    Article  Google Scholar 

  42. Hou XD, Li AL, Lin KP, Wang YY, Kuang ZY, Cao SL (2018) Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour Technol 249:261–267. https://doi.org/10.1016/j.biortech.2017.10.019

    Article  Google Scholar 

  43. Nitsos C, Stoklosa R, Karnaouri A, Voros D, Lange H, Hodge D, Christakopoulos P (2016) Isolation and characterization of organosolv and alkaline lignins from hardwood and softwood biomass. ACS Sustainable Chem Eng 4:5181–5193. https://doi.org/10.1021/acssuschemeng.6b01205

    Article  Google Scholar 

  44. Chen Y, Zhang L, Yu J, Lu Y, Jiang B, Fan Y, Wang Z (2019) High-purity lignin isolated from poplar wood meal through dissolving treatment with deep eutectic solvents. R Soc Open Sci 6:181757. https://doi.org/10.1098/rsos.181757

    Article  Google Scholar 

  45. Cronin DJ, Chen X, Moghaddam L, Zhang X (2020) Deep eutectic solvent extraction of high-purity lignin from a corn stover hydrolysate. ChemSusChem 13:4678–4690. https://doi.org/10.1002/cssc.202001243

    Article  Google Scholar 

  46. Faris AH, Ibrahim MNM, Rahim A, Hussin MH, Brosse N (2015) Preparation and characterization of lignin polyols from the residues of oil palm empty fruit bunch. BioRes 10:7339–7352. https://doi.org/10.15376/biores.10.4.7339-7352

    Article  Google Scholar 

  47. Yue X, Suopajärvi T, Mankinen O, Mikola M, Mikkelson A, Ahola J, Liimatainen H (2020) Comparison of lignin fractions isolated from wheat straw using alkaline and acidic deep eutectic solvents. J Agric Food Chem 68:15074–15084. https://doi.org/10.1021/acs.jafc.0c04981

    Article  Google Scholar 

  48. Wu Y, Cheng J, Yang Q, Hu J, Zhou Q, Wang L, Hui L (2021) Solid acid facilitated deep eutectic solvents extraction of high-purity and antioxidative lignin production from poplar wood. Int J Biol Macromol 193:64–70. https://doi.org/10.1016/j.ijbiomac.2021.10.120

    Article  Google Scholar 

  49. Qu W, Liu J, Xue Y, Wang X, Bai X (2017) Potential of producing carbon fiber from biorefinery corn stover lignin with high ash content. J Appl Polym Sci 135:1–11. https://doi.org/10.1002/app.45736

    Article  Google Scholar 

  50. Mousa EA, Ahmed HM, Wang C (2017) Novel approach towards biomass lignin utilization in ironmaking blast furnace. ISIJ Int 57:1788–1796. https://doi.org/10.2355/isijinternational.ISIJINT-2017-127

    Article  Google Scholar 

  51. Vinod A, Pulikkalparambil H, Jagadeesh P, Rangappa SM, Siengchin S (2023) Recent advancements in lignocellulose biomass-based carbon fiber: Synthesis, properties, and applications. Heliyon 9:E13614. https://doi.org/10.1016/j.heliyon.2023.e13614

    Article  Google Scholar 

  52. Chen Z, Bai X, Zhang H, Wan C (2020) Insights into structural changes of lignin toward tailored properties during deep eutectic solvent pretreatment. ACS Sustainable Chem Eng 8:9783–9793. https://doi.org/10.1021/acssuschemeng.0c01361

    Article  Google Scholar 

  53. Wang S, Su S, Xiao LP, Wang B, Sun RC, Song G (2020) Catechyl lignin extracted from Castor seed coats using deep eutectic solvents: characterization and depolymerization. ACS Sustainable Chem Eng 8:7031–7038. https://doi.org/10.1021/acssuschemeng.0c00462

    Article  Google Scholar 

  54. Wang Y, Meng X, Jeong K, Li S, Leem G, Kim KH, Pu Y, Ragauskas AJ, Yoo CG (2020) Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion. ACS Sustainable Chem Eng 8:12542–12553. https://doi.org/10.1021/acssuschemeng.0c03533

    Article  Google Scholar 

  55. Su Y, Huang C, Lai C, Yong Q (2021) Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresour Technol 321:124471. https://doi.org/10.1016/j.biortech.2020.124471

    Article  Google Scholar 

  56. Shen XJ, Wen JL, Mei Q (2019) Facile fractionation of lignocelluloses by biomass derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21:275–283. https://doi.org/10.1039/C8GC03064B

    Article  Google Scholar 

  57. Zhou M, Fakayode OA, Yagoub AEA, Ji Q, Zhou C (2022) Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renew Sustain Energy Rev 156:111986. https://doi.org/10.1016/j.rser.2021.111986

    Article  Google Scholar 

  58. Sun SC, Xu Y, Wen JL, Yuan TQ, Sun R (2022) Recent advances of lignin-based carbon fibers (LCFs): precursors, fabrications, properties, and applications. Green Chem 4:5709–5738. https://doi.org/10.1039/D2GC01503J

    Article  Google Scholar 

  59. Mishra G, Saka S (2011) Kinetic behavior of liquefaction of Japanese beech in subcritical phenol. Bioresour Technol 102:10946–10950. https://doi.org/10.1016/j.biortech.2011.08.126

    Article  Google Scholar 

  60. Li T, Yin Y, Wu S, Du X (2022) Effect of deep eutectic solvents-regulated lignin structure on subsequent pyrolysis products selectivity. Bioresour Technol 343:126120. https://doi.org/10.1016/j.biortech.2021.126120

    Article  Google Scholar 

  61. Fan L, Ruan R, Liu Y, Wang Y, Tu C (2015) Effects of extraction conditions on the characteristics of ethanol organosolv lignin from bamboo (Phyllostachys pubescens Mazel). BioRes 10:7998–8013. https://doi.org/10.15376/biores.10.4.7998-8013

    Article  Google Scholar 

  62. Zhang C, Shen X, Jin Y, Cheng J, Cai C, Wang F (2023) Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem Rev 123:4510–4601. https://doi.org/10.1021/acs.chemrev.2c00664

    Article  Google Scholar 

  63. Guo Z, Zhang Q, You T, Zhang X, Xu F, Wu Y (2019) Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chem 21:3099–3108. https://doi.org/10.1039/C9GC00704K

    Article  Google Scholar 

  64. Börcsök Z, Pásztory Z (2021) The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey. Eur J Wood Wood Prod 79:511–526. https://doi.org/10.1007/s00107-020-01637-3

    Article  Google Scholar 

Download references

Funding

This research has been made possible by the grant provided by the Ministry of Higher Education, Malaysia, under the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2020/STG05/UNIKL/02/1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tau-Len Kelly Yong, Khairul Faizal Pa’ee; Methodology: Afiqah Liana Sazali, Siti Khadijah Amran, Tau-Len Kelly Yong; Formal analysis and investigation: Afiqah Liana Sazali, Siti Khadijah Amran; Writing - original draft preparation: Afiqah Liana Sazali, Siti Khadijah Amran; Writing - review and editing: Tau-Len Kelly Yong, Mohd Razealy Anuar, Khairul Faizal Pa’ee; Funding acquisition: Tau-Len Kelly Yong; Supervision: Tau-Len Kelly Yong

Corresponding author

Correspondence to Tau-Len Kelly Yong.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazali, A.L., Amran, S.K., Anuar, M.R. et al. Lignin from oil palm biomass using deep eutectic solvent as carbon fibre precursor. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04624-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04624-9

Keywords

Navigation