Skip to main content
Log in

Valorization of cactus biomass to manufacture sustainable packaging films: moisture sorption behavior and influence of citric acid as crosslinking agent

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cactus mucilage-gelatin (CF/GTN)-based bio-composite film was fabricated via solution casting method. Citric acid (CA) as a crosslinking agent in a concentration of 0.5%, 1%, 3%, and 5% was used, and its influences on moisture sorption characteristics and mechanical properties of the film were studied. Sorption kinetics and sorption isotherm of developed films were obtained using Peleg and Guggenheim Anderson De-boer (GAB) model at 30 °C for 11.3%, 32.4%, 51.4%, and 75.7% relative humidity. Incorporating CA reduces the film’s moisture content, swelling ratio, water vapor permeability, and moisture sorption tendency. Equilibrium moisture content was lowest for 5% CA films for all humidity conditions. Guggenheim’s monolayer (cg) and multilayer constant (k) decreases with an increasing degree of crosslinking. The regression coefficient (R2) and the coefficient of determination (R2) show the goodness of the GAB and Peleg models. The film with 0.5% CA has better crystallinity and the highest tensile strength among all the films, depicting its suitability for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the manuscript.

References

  1. Kumar L, Ramakanth D, Akhila K, Gaikwad KK (2022) Edible films and coatings for food packaging applications: a review. Environ Chem Lett 20:875–900. https://doi.org/10.1007/s10311-021-01339-z

    Article  Google Scholar 

  2. Kumar P, Tanwar R, Gupta V et al (2021) Pineapple peel extract incorporated poly(vinyl alcohol)-corn starch film for active food packaging: preparation, characterization and antioxidant activity. Int J Biol Macromol 187:223–231. https://doi.org/10.1016/J.IJBIOMAC.2021.07.136

    Article  Google Scholar 

  3. Parikh VM, Jones JKN (1965) Structure of cholla gum (Opuntia fulgida). J Polym Sci Part C Polym Symp 11:139–148. https://doi.org/10.1002/POLC.5070110111

    Article  Google Scholar 

  4. Mohamed SAA, El-Sakhawy M, El-Sakhawy MAM (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: a review. Carbohydr Polym 238:116178. https://doi.org/10.1016/J.CARBPOL.2020.116178

    Article  Google Scholar 

  5. Kumar L, Deshmukh RK, Gaikwad KK (2022) Antimicrobial packaging film from cactus (Cylindropuntia fulgida) mucilage and gelatine. Int J Biol Macromol 215:596–605. https://doi.org/10.1016/J.IJBIOMAC.2022.06.162

    Article  Google Scholar 

  6. Gheribi R, Khwaldia K (2019) Cactus mucilage for food packaging applications. Coatings 9:1–19. https://doi.org/10.3390/COATINGS9100655

    Article  Google Scholar 

  7. Yang Y, Chen G, Murray P, Zhang H (2020) Porous chitosan by crosslinking with tricarboxylic acid and tuneable release. SN Appl Sci 2:1–10. https://doi.org/10.1007/S42452-020-2252-Z/FIGURES/7

    Article  Google Scholar 

  8. Wu H, Lei Y, Lu J et al (2019) Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocoll 97:105208. https://doi.org/10.1016/J.FOODHYD.2019.105208

    Article  Google Scholar 

  9. Li K, Zhu J, Guan G, Wu H (2019) Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: film properties, characterization, and formation mechanism. Int J Biol Macromol 122:485–492. https://doi.org/10.1016/J.IJBIOMAC.2018.10.188

    Article  Google Scholar 

  10. Chen C, Chen Y, Xie J et al (2017) Effects of montmorillonite on the properties of cross-linked poly(vinyl alcohol)/boric acid films. Prog Org Coatings 112:66–74. https://doi.org/10.1016/J.PORGCOAT.2017.06.003

    Article  Google Scholar 

  11. Cao N, Fu Y, He J (2007) Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocoll 21:575–584. https://doi.org/10.1016/J.FOODHYD.2006.07.001

    Article  Google Scholar 

  12. Gough JE, Scotchford CA, Downes S (2002) Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res 61:121–130. https://doi.org/10.1002/JBM.10145

    Article  Google Scholar 

  13. Singhi H, Kumar L, Sarkar P, Gaikwad KK (2023) Chitosan based antioxidant biofilm with waste Citrus limetta pomace extract and impregnated with halloysite nanotubes for food packaging. J Food Meas Charact 1–14. https://doi.org/10.1007/S11694-023-01825-8/METRICS

  14. Fernandes SCM, Freire CSR, Silvestre AJD et al (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401. https://doi.org/10.1016/J.CARBPOL.2010.02.037

    Article  Google Scholar 

  15. Wang M, Jia X, Liu W, Lin X (2021) Water insoluble and flexible transparent film based on carboxymethyl cellulose. Carbohydr Polym 255:117353. https://doi.org/10.1016/J.CARBPOL.2020.117353

    Article  Google Scholar 

  16. Zarandona I, Minh NC, Trung TS et al (2021) Evaluation of bioactive release kinetics from crosslinked chitosan films with Aloe vera. Int J Biol Macromol 182:1331–1338. https://doi.org/10.1016/J.IJBIOMAC.2021.05.087

    Article  Google Scholar 

  17. Beghetto V, Gatto V, Conca S et al (2020) Development of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride cross-linked carboxymethyl cellulose films. Carbohydr Polym 249:116810. https://doi.org/10.1016/J.CARBPOL.2020.116810

    Article  Google Scholar 

  18. Sole R, Buranello C, Di Michele A, Beghetto V (2022) Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking. Int J Biol Macromol 209:2009–2019. https://doi.org/10.1016/J.IJBIOMAC.2022.04.181

    Article  Google Scholar 

  19. Kanatt SR, Makwana SH (2020) Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydr Polym 227. https://doi.org/10.1016/J.CARBPOL.2019.115303

  20. Menzel C, Olsson E, Plivelic TS et al (2013) Molecular structure of citric acid cross-linked starch films. Carbohydr Polym 96:270–276. https://doi.org/10.1016/J.CARBPOL.2013.03.044

    Article  Google Scholar 

  21. Wen L, Liang Y, Lin Z et al (2021) Design of multifunctional food packaging films based on carboxymethyl chitosan/polyvinyl alcohol crosslinked network by using citric acid as crosslinker. Polymer (Guildf) 230:124048. https://doi.org/10.1016/J.POLYMER.2021.124048

    Article  Google Scholar 

  22. Mali KK, Dhawale SC, Dias RJ et al (2018) Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery. Indian J Pharm Sci 80:657–667. https://doi.org/10.4172/pharmaceutical-sciences.1000405

    Article  Google Scholar 

  23. Uranga J, Nguyen BT, Si TT et al (2020) The effect of cross-linking with citric acid on the properties of agar/fish gelatin films. Polymers (Basel) 12:1–12. https://doi.org/10.3390/polym12020291

    Article  Google Scholar 

  24. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr Polym 60:283–289. https://doi.org/10.1016/j.carbpol.2005.01.003

    Article  Google Scholar 

  25. Othman SH, Edwal SAM, Risyon NP et al (2017) Water sorption and water permeability properties of edible film made from potato peel waste. Food Sci Technol 37:63–70. https://doi.org/10.1590/1678-457X.30216

    Article  Google Scholar 

  26. Turhan M, Sayar S, Gunasekaran S (2002) Application of Peleg model to study water absorption in chickpea during soaking. J Food Eng 53:153–159. https://doi.org/10.1016/S0260-8774(01)00152-2

    Article  Google Scholar 

  27. Arik Kibar EA, Us F (2013) Thermal, mechanical and water adsorption properties of corn starch-carboxymethylcellulose/methylcellulose biodegradable films. J Food Eng 114:123–131. https://doi.org/10.1016/j.jfoodeng.2012.07.034

    Article  Google Scholar 

  28. Suppakul P, Chalernsook B, Ratisuthawat B et al (2013) Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing-antiplasticizing effects. LWT - Food Sci Technol 50:290–297. https://doi.org/10.1016/j.lwt.2012.05.013

    Article  Google Scholar 

  29. Zhang Y, Han JH (2006) Mechanical and thermal characteristics of pea starch films plasticized with monosaccharides and polyols. J Food Sci 71:E109–E118. https://doi.org/10.1111/J.1365-2621.2006.TB08891.X

    Article  Google Scholar 

  30. Rhim JW, Gennadios A, Weller CL et al (1998) Soy protein isolate–dialdehyde starch films. Ind Crops Prod 8:195–203. https://doi.org/10.1016/S0926-6690(98)00003-X

    Article  Google Scholar 

  31. Zhang R, Wang W, Zhang H et al (2019) Effects of hydrophobic agents on the physicochemical properties of edible agar/maltodextrin films. Food Hydrocoll 88:283–290. https://doi.org/10.1016/J.FOODHYD.2018.10.008

    Article  Google Scholar 

  32. Lee KY, Shim J, Lee HG (2004) Mechanical properties of gellan and gelatin composite films. Carbohydr Polym 56:251–254. https://doi.org/10.1016/J.CARBPOL.2003.04.001

    Article  Google Scholar 

  33. Basha RK, Konno K, Kani H, Kimura T (2011) Water vapor transmission rate of biomass based film materials. Eng Agric Environ Food 4:37–42. https://doi.org/10.1016/S1881-8366(11)80018-2

    Article  Google Scholar 

  34. Gomaa M, Hifney AF, Fawzy MA, Abdel-Gawad KM (2018) Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocoll 82:239–247. https://doi.org/10.1016/J.FOODHYD.2018.03.056

    Article  Google Scholar 

  35. Jideani VA, Mpotokwana SM (2009) Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. J Food Eng 92:182–188. https://doi.org/10.1016/J.JFOODENG.2008.10.040

    Article  Google Scholar 

  36. Robertson GL, Lee DS (2021) Comparison of linear and GAB isotherms for estimating the shelf life of low moisture foods packaged in plastic films. J Food Eng 291:110317. https://doi.org/10.1016/j.jfoodeng.2020.110317

    Article  Google Scholar 

  37. Hernández-Muñoz P, Villalobos R, Chiralt A (2004) Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocoll 18:403–411. https://doi.org/10.1016/S0268-005X(03)00128-0

    Article  Google Scholar 

  38. Marcos B, Esteban MA, López P et al (1997) Monolayer values at 30°C of various spices as computed by the BET and GAB models. Eur Food Res Technol 204:109–112. https://doi.org/10.1007/s002170050046

    Article  Google Scholar 

  39. Seligra PG, Medina Jaramillo C, Famá L, Goyanes S (2016) Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent. Carbohydr Polym 138:66–74. https://doi.org/10.1016/J.CARBPOL.2015.11.041

    Article  Google Scholar 

  40. Suriyatem R, Auras RA, Rachtanapun P (2018) Improvement of mechanical properties and thermal stability of biodegradable rice starch–based films blended with carboxymethyl chitosan. Ind Crops Prod 122:37–48. https://doi.org/10.1016/J.INDCROP.2018.05.047

    Article  Google Scholar 

  41. Rhim JW (2004) Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Sci Technol 37:323–330. https://doi.org/10.1016/J.LWT.2003.09.008

    Article  Google Scholar 

  42. Zhuang J, Li M, Pu Y et al (2020) Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl Sci 10. https://doi.org/10.3390/APP10124345

  43. Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on zein/polycaprolactone/collagen for wound healing. Int J Biol Macromol 153:921–930. https://doi.org/10.1016/j.ijbiomac.2020.03.036

    Article  Google Scholar 

  44. Ghorpade VS, Yadav AV, Dias RJ et al (2018) Citric acid crosslinked carboxymethylcellulose-poly(ethylene glycol) hydrogel films for delivery of poorly soluble drugs. Int J Biol Macromol 118:783–791. https://doi.org/10.1016/J.IJBIOMAC.2018.06.142

    Article  Google Scholar 

  45. Shi R, Bi J, Zhang Z et al (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770. https://doi.org/10.1016/J.CARBPOL.2008.04.045

    Article  Google Scholar 

  46. Li F, Chen Y, Li L et al (2012) Starch-chitosan blend films prepared by glutaraldehyde cross-linking. Adv Mater Res 415–417:1626–1629. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.415-417.1626

    Article  Google Scholar 

  47. Lei Y, Wu H, Jiao C et al (2019) Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocoll 94:128–135. https://doi.org/10.1016/J.FOODHYD.2019.03.011

    Article  Google Scholar 

  48. Garavand F, Rouhi M, Razavi SH et al (2017) Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: a review. Int J Biol Macromol 104:687–707. https://doi.org/10.1016/J.IJBIOMAC.2017.06.093

    Article  Google Scholar 

  49. Tonyali B, Cikrikci S, Oztop MH (2018) Physicochemical and microstructural characterization of gum tragacanth added whey protein based films. Food Res Int 105:1–9. https://doi.org/10.1016/J.FOODRES.2017.10.071

    Article  Google Scholar 

  50. Ebrahimi SE, Koocheki A, Milani E, Mohebbi M (2016) Interactions between Lepidium perfoliatum seed gum – Grass pea (Lathyrus sativus) protein isolate in composite biodegradable film. Food Hydrocoll 54:302–314. https://doi.org/10.1016/J.FOODHYD.2015.10.020

    Article  Google Scholar 

  51. Nataraj D, Sakkara S, Meghwal M, Reddy N (2018) Crosslinked chitosan films with controllable properties for commercial applications. Int J Biol Macromol 120:1256–1264. https://doi.org/10.1016/J.IJBIOMAC.2018.08.187

    Article  Google Scholar 

  52. Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr Polym 84:335–342. https://doi.org/10.1016/J.CARBPOL.2010.11.041

    Article  Google Scholar 

  53. Zhang A, Han Y, Zhou Z (2023) Characterization of citric acid crosslinked chitosan/gelatin composite film with enterocin CHQS and red cabbage pigment. Food Hydrocoll 135:108144. https://doi.org/10.1016/J.FOODHYD.2022.108144

    Article  Google Scholar 

  54. Peleg M (1988) An empirical model for the description of moisture sorption curves. J Food Sci 53:1216–1217. https://doi.org/10.1111/J.1365-2621.1988.TB13565.X

    Article  Google Scholar 

  55. Chowdhury T, Journal MD-IFR, 2012 Undefined moisture sorption isotherm and isosteric heat of sorption of edible films made from blends of starch, amylose and methyl cellulose. ifrj.upm.edu.my

    Google Scholar 

  56. De La Cruz GV, Torres JA, Martín-Polo MO (2001) Temperature effect on the moisture sorption isotherms for methylcellulose and ethylcellulose films. J Food Eng 48:91–94. https://doi.org/10.1016/S0260-8774(00)00143-6

    Article  Google Scholar 

  57. El SE, Naguib HF (2003) Water sorption in cross-linked poly (vinyl alcohol) networks. Polymer 44:1647–1653

    Article  Google Scholar 

  58. Van den Berg C (1991) Food-water relations: progress and integration, comments and thoughts. Adv Exp Med Biol 302:21–28. https://doi.org/10.1007/978-1-4899-0664-9_2/COVER

    Article  Google Scholar 

Download references

Funding

Author K. K. Gaikwad received financial support from the Science and Engineering Research Board (SERB), Government of India, provided under the Start-Up Research Grant (SRG) (SRG/2021/001549).

Author information

Authors and Affiliations

Authors

Contributions

Lokesh Kumar: investigation, formal analysis, visualization, data curation, writing—original draft. Shefali Tripathi: formal analysis. Kirtiraj K. Gaikwad: conceptualization, methodology, resources, manuscript editing and review, supervision, fund allocation, project management.

Corresponding author

Correspondence to Kirtiraj K. Gaikwad.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, L., Tripathi, S. & Gaikwad, K.K. Valorization of cactus biomass to manufacture sustainable packaging films: moisture sorption behavior and influence of citric acid as crosslinking agent. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04391-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04391-7

Keywords

Navigation