Skip to main content

Advertisement

Log in

Enhanced visible light photocatalytic degradation of methylene blue dye using efficient Mg/S co-doped TiO2 nanoparticles

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Herein, the Mg-S co-doped TiO2 nanoparticles (NPs) were synthesized by the sol-gel method, and their photocatalytic activity of MB (methylene blue) dye was examined under simulated visible light. X-ray diffraction patterns of Mg-S co-doped TiO2 reveal an average crystallite size of 19.3 nm. Moreover, results showed that Mg/S co-doped TiO2 NPs had pure anatase structures with spherical morphology. The band gap energy Mg/S co-doped TiO2 was decreased from 3.12 to 2.78 eV by adding the doping and codoping of Mg and S into TiO2 NPs. The Mg/S co-doped TiO2 NPs showed excellent photocatalytic activity compared to pristine TiO2, Mg-TiO2, and S-TiO2 NPs. The maximum degradation efficiency of MB was achieved at 94.8% for Mg/S co-doped TiO2 NPs. Meanwhile, the possible photocatalytic mechanism of photocatalysts was discussed. Different weight percentages of Mg/S co-doped TiO2 were used to investigate the effect of the Ag concentration on antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the maximum antibacterial activity was achieved by 24 mm and 22 mm for TiO2 NPs membrane doped and co-doped with Mg/S. The current investigation delivers a promising strategy to promote photocatalytic activity to eliminate waterborne contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All obtained data during this work are included in this manuscript.

References

  1. Wattanawikkam C, Pecharapa W (2020) Structural studies and photocatalytic properties of Mn and Zn co-doping on TiO2 prepared by single step sonochemical method. Radiat Phys Chem 171:108714. https://doi.org/10.1016/j.radphyschem.2020.108714

    Article  Google Scholar 

  2. Azadi S, Karimi-Jashni A, Javadpour S, Amiri H (2020) Photocatalytic treatment of landfill leachate using cascade photoreactor with immobilized W-C-codoped TiO2 nanoparticles. J Water Process Eng 36:101307. https://doi.org/10.1016/j.jwpe.2020.101307

    Article  Google Scholar 

  3. Kosar Hashemi Y, Tavakkoli Yaraki M, Ghanbari S et al (2021) Photodegradation of organic water pollutants under visible light using anatase F, N co-doped TiO2/SiO2 nanocomposite: semi-pilot plant experiment and density functional theory calculations. Chemosphere 275:129903. https://doi.org/10.1016/j.chemosphere.2021.129903

    Article  Google Scholar 

  4. Sharma K, Patial S, Singh P et al (2022) Strategies and perspectives of tailored SnS2 photocatalyst for solar driven energy applications. Sol Energy 231:546–565. https://doi.org/10.1016/j.solener.2021.11.041

    Article  Google Scholar 

  5. Hao X, Xiang D, Jin Z (2021) Zn-vacancy engineered S-scheme ZnCdS/ZnS photocatalyst for highly efficient photocatalytic H 2 evolution. ChemCatChem 13:4738–4750. https://doi.org/10.1002/cctc.202100994

    Article  Google Scholar 

  6. Kavitha S, Ranjith R, Jayamani N (2022) Facile construction of novel Ag 2 O combined TiO 2 nanocomposites with enhanced dye degradation under visible-light photocatalytic activity. Mater Technol 37:1205–1219. https://doi.org/10.1080/10667857.2021.1928436

    Article  Google Scholar 

  7. Rajendran R, Varadharajan K, Jayaraman V (2019) Fabrication of tantalum doped CdS nanoparticles for enhanced photocatalytic degradation of organic dye under visible light exposure. Colloids Surfaces A Physicochem Eng Asp 580:123688. https://doi.org/10.1016/j.colsurfa.2019.123688

    Article  Google Scholar 

  8. Kunnamareddy M, Rajendran R, Sivagnanam M et al (2021) Nickel and sulfur codoped TiO2 nanoparticles for efficient visible light photocatalytic activity. J Inorg Organomet Polym Mater 31:2615–2626. https://doi.org/10.1007/s10904-021-01914-5

    Article  Google Scholar 

  9. Asha S, Hentry C, Bindhu MR et al (2021) Improved photocatalytic activity for degradation of textile dyeing waste water and thiazine dyes using PbWO4 nanoparticles synthesized by co-precipitation method. Environ Res 200:111721. https://doi.org/10.1016/j.envres.2021.111721

    Article  Google Scholar 

  10. Zhang T, Liu J, Zhou F et al (2020) Polymer-Coated Fe 2 O 3 Nanoparticles for photocatalytic degradation of organic materials and antibiotics in water. ACS Appl Nano Mater 3:9200–9208. https://doi.org/10.1021/acsanm.0c01829

    Article  Google Scholar 

  11. Venkatesan A, Al-onazi WA, Elshikh MS et al (2022) Study of synergistic effect of cobalt and carbon codoped with TiO2 photocatalyst for visible light induced degradation of phenol. Chemosphere 305:135333. https://doi.org/10.1016/j.chemosphere.2022.135333

    Article  Google Scholar 

  12. Singaram B, Varadharajan K, Jeyaram J et al (2017) Preparation of cerium and sulfur codoped TiO2 nanoparticles based photocatalytic activity with enhanced visible light. J Photochem Photobiol A Chem 349:91–99. https://doi.org/10.1016/j.jphotochem.2017.09.003

    Article  Google Scholar 

  13. Kunnamareddy M, Diravidamani B, Rajendran R et al (2018) Synthesis of silver and sulphur codoped TiO2 nanoparticles for photocatalytic degradation of methylene blue. J Mater Sci Mater Electron 29:18111–18119. https://doi.org/10.1007/s10854-018-9922-2

    Article  Google Scholar 

  14. Wang J, Qin M, Tao H et al (2015) Performance enhancement of perovskite solar cells with Mg-doped TiO 2 compact film as the hole-blocking layer. Appl Phys Lett 106:121104. https://doi.org/10.1063/1.4916345

    Article  Google Scholar 

  15. Diego-Rucabado A, Candela MT, Aguado F et al (2021) Photocatalytic activity of undoped and Mn- and Co-doped TiO 2 nanocrystals incorporated in enamel coatings on stainless steel. React Chem Eng 6:2376–2390. https://doi.org/10.1039/D1RE00293G

    Article  Google Scholar 

  16. Duan B, Zhou Y, Huang C et al (2018) Impact of Zr-doped TiO 2 photocatalyst on formaldehyde degradation by Na addition. Ind Eng Chem Res 57:14044–14051. https://doi.org/10.1021/acs.iecr.8b03016

    Article  Google Scholar 

  17. Guan B, Yu J, Guo S et al (2020) Porous nickel doped titanium dioxide nanoparticles with improved visible light photocatalytic activity. Nanoscale Adv 2:1352–1357. https://doi.org/10.1039/C9NA00760A

    Article  Google Scholar 

  18. Ramacharyulu PVRK, Nimbalkar DB, Kumar JP et al (2015) N-doped, S-doped TiO 2 nanocatalysts: synthesis, characterization and photocatalytic activity in the presence of sunlight. RSC Adv 5:37096–37101. https://doi.org/10.1039/C4RA08858A

    Article  Google Scholar 

  19. Negi C, Kandwal P, Rawat J et al (2021) Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Appl Surf Sci 554:149553. https://doi.org/10.1016/j.apsusc.2021.149553

    Article  Google Scholar 

  20. Harikishore M, Sandhyarani M, Venkateswarlu K et al (2014) Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO 2. Procedia Mater Sci 6:557–566. https://doi.org/10.1016/j.mspro.2014.07.071

    Article  Google Scholar 

  21. Wang Y, Yang H, Xue X (2014) Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium. Vacuum 107:28–32. https://doi.org/10.1016/j.vacuum.2014.03.026

    Article  Google Scholar 

  22. Singaram B, Jeyaram J, Rajendran R et al (2019) Visible light photocatalytic activity of tungsten and fluorine codoped TiO2 nanoparticle for an efficient dye degradation. Ionics (Kiel) 25:773–784. https://doi.org/10.1007/s11581-018-2628-x

    Article  Google Scholar 

  23. Meimani R, Aghajani Z, Najafi GR (2018) Ni–Mg co-doped ZnO nanoparticles as a novel catalyst for hydroxylation of benzene to phenol. Res Chem Intermed 44:3947–3958. https://doi.org/10.1007/s11164-018-3333-0

    Article  Google Scholar 

  24. Asadi A, Akbarzadeh R, Eslami A et al (2019) Effect of synthesis method on NS-TiO2 photocatalytic performance. Energy Procedia 158:4542–4547. https://doi.org/10.1016/j.egypro.2019.01.756

    Article  Google Scholar 

  25. Realpe Jimenez A, Nuñez D, Rojas N et al (2021) Effect of Fe–N codoping on the optical properties of TiO 2 for use in photoelectrolysis of water. ACS Omega 6:4932–4938. https://doi.org/10.1021/acsomega.0c05981

    Article  Google Scholar 

  26. Jaiswal R, Bharambe J, Patel N et al (2015) Copper and nitrogen co-doped TiO 2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal Environ 168–169:333–341. https://doi.org/10.1016/j.apcatb.2014.12.053

    Article  Google Scholar 

  27. Kurtoglu ME, Longenbach T, Sohlberg K, Gogotsi Y (2011) Strong coupling of Cr and N in Cr–N-doped TiO 2 and its effect on photocatalytic activity. J Phys Chem C 115:17392–17399. https://doi.org/10.1021/jp2026972

    Article  Google Scholar 

  28. Sharotri N, Sud D (2017) Visible light responsive Mn-S-co-doped TiO2 photocatalyst – synthesis, characterization and mechanistic aspect of photocatalytic degradation. Sep Purif Technol 183:382–391. https://doi.org/10.1016/j.seppur.2017.03.053

    Article  Google Scholar 

  29. Zhang J, Pan C, Fang P et al (2010) Mo + C codoped TiO 2 using thermal oxidation for enhancing photocatalytic activity. ACS Appl Mater Interfaces 2:1173–1176. https://doi.org/10.1021/am100011c

    Article  Google Scholar 

  30. Hamadanian M, Reisi-Vanani A, Behpour M, Esmaeily AS (2011) Synthesis and characterization of Fe,S-codoped TiO2 nanoparticles: application in degradation of organic water pollutants. Desalination 281:319–324. https://doi.org/10.1016/j.desal.2011.08.028

    Article  Google Scholar 

  31. Huertas N, Monroy Z, Medina R, Castañeda J (2017) Antimicrobial activity of Truncated and polyvalent peptides derived from the FKCRRQWQWRMKKGLA sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules 22:987. https://doi.org/10.3390/molecules22060987

    Article  Google Scholar 

  32. Karimi F, Rezaei-savadkouhi N, Uçar M et al (2022) Efficient green photocatalyst of silver-based palladium nanoparticles for methyle orange photodegradation, investigation of lipid peroxidation inhibition, antimicrobial, and antioxidant activity. Food Chem Toxicol 169:113406. https://doi.org/10.1016/j.fct.2022.113406

    Article  Google Scholar 

  33. Zhang C, Chen S, Mo L et al (2011) Charge Recombination and band-edge shift in the dye-sensitized Mg 2+ -Doped TiO 2 solar cells. J Phys Chem C 115:16418–16424. https://doi.org/10.1021/jp2024318

    Article  Google Scholar 

  34. Zhang J, Zhao Z, Wang X et al (2010) Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. J Phys Chem C 114:18396–18400. https://doi.org/10.1021/jp106648c

    Article  Google Scholar 

  35. Liu Q, Zhou Y, Duan Y et al (2013) Improved photovoltaic performance of dye-sensitized solar cells (DSSCs) by Zn+Mg co-doped TiO2 electrode. Electrochim Acta 95:48–53. https://doi.org/10.1016/j.electacta.2013.02.008

    Article  Google Scholar 

  36. Wu M, Yang B, Lv Y et al (2010) Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO 2 hollow nanorod arrays with enhanced photocatalytic activity. Appl Surf Sci 256:7125–7130. https://doi.org/10.1016/j.apsusc.2010.05.038

    Article  Google Scholar 

  37. Kiran Avasarala B, Tirukkovalluri SR (2016) Magnesium doped titania for photocatalytic degradation of dyes in visible light. J Environ Anal Toxicol 06. https://doi.org/10.4172/2161-0525.1000358

  38. Sun H, Bai Y, Cheng Y et al (2006) Preparation and characterization of visible-light-driven carbon - sulfur-codoped TiO2 photocatalysts. Ind Eng Chem Res 45:4971–4976. https://doi.org/10.1021/ie060350f

    Article  Google Scholar 

  39. Kuvarega AT, Krause RWM, Mamba BB (2011) Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C 115:22110–22120. https://doi.org/10.1021/jp203754j

    Article  Google Scholar 

  40. Zhu M, Zhai C, Qiu L et al (2015) New method to synthesize S-doped TiO 2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation. ACS Sustain Chem Eng 3:3123–3129. https://doi.org/10.1021/acssuschemeng.5b01137

    Article  Google Scholar 

  41. Xie W, Li R, Xu Q (2018) Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci Rep 8. https://doi.org/10.1038/s41598-018-27135-4

  42. Singh AP, Kumari S, Shrivastav R et al (2008) Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen. Int J Hydrogen Energy 33:5363–5368. https://doi.org/10.1016/j.ijhydene.2008.07.041

    Article  Google Scholar 

  43. Amano F, Nakata M, Vequizo JJM, Yamakata A (2019) Enhanced visible light response of TiO2 codoped with Cr and Ta photocatalysts by electron doping. ACS Appl Energy Mater 2:3274–3282. https://doi.org/10.1021/acsaem.9b00126

    Article  Google Scholar 

  44. Ratshiedana R, Fakayode OJ, Mishra AK, Kuvarega AT (2021) Visible-light photocatalytic degradation of tartrazine using hydrothermal synthesized Ag-doped TiO2 nanoparticles. J Water Process Eng 44. https://doi.org/10.1016/j.jwpe.2021.102372

  45. Shi M, Li W, Wang Q et al (2021) One-step hydrothermal synthesis of BiVO4/TiO2/RGO composite with effective photocatalytic performance for the degradation of ciprofloxacin. Opt Mater (Amst) 122. https://doi.org/10.1016/j.optmat.2021.111726

  46. Cui Y, Zheng J, Wang Z et al (2021) Magnetic induced fabrication of core-shell structure Fe3O4@TiO2 photocatalytic membrane: enhancing photocatalytic degradation of tetracycline and antifouling performance. J Environ Chem Eng 9. https://doi.org/10.1016/j.jece.2021.106666

  47. Hoang NT-T, Tran AT-K, Le T-A, Nguyen DD (2021) Enhancing efficiency and photocatalytic activity of TiO2-SiO2 by combination of glycerol for MO degradation in continuous reactor under solar irradiation. J Environ Chem Eng 9:105789. https://doi.org/10.1016/j.jece.2021.105789

    Article  Google Scholar 

  48. Zeng X, Sun X, Yu Y et al (2019) Photocatalytic degradation of flumequine with B/N codoped TiO2 catalyst: kinetics, main active species, intermediates and pathways. Chem Eng J 378. https://doi.org/10.1016/j.cej.2019.122226

  49. Ma R, Wang X, Huang J et al (2017) Photocatalytic degradation of salicylic acid with magnetic activated carbon-supported F-N codoped TiO2 under visible light. Vacuum 141:157–165. https://doi.org/10.1016/j.vacuum.2017.04.003

    Article  Google Scholar 

  50. Zhang X, Chen W-F, Bahmanrokh G, Kumar V, Ho N, Koshy P, Sorrell CC Synthesis of V- and Mo-doped/codoped TiO2 powders for photocatalytic degradation of methylene blue. Nano-Structures & Nano-Objects 24:100557. https://doi.org/10.1016/j.nanoso.2020.100557

  51. Verma V, Al-Dossari M, Singh J et al (2022) A review on green synthesis of TiO2 NPs: photocatalysis and antimicrobial applications. Polymers (Basel) 14:1444. https://doi.org/10.3390/polym14071444

    Article  Google Scholar 

  52. Sagadevan S, Imteyaz S, Murugan B et al (2022) A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process Synth 11:44–63. https://doi.org/10.1515/gps-2022-0005

    Article  Google Scholar 

  53. Yerli-Soylu N, Akturk A, Kabak Ö et al (2022) TiO2 nanocomposite ceramics doped with silver nanoparticles for the photocatalytic degradation of methylene blue and antibacterial activity against Escherichia coli. Eng Sci Technol an Int J 35:101175. https://doi.org/10.1016/j.jestch.2022.101175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mehala Kunnamareddy: Investigation, Methodology, Writing-Original draft, Software. Karmegam Natchimuthu: Conceptualization, Formal analysis, writing. Kavitha Tangavelu: Writing - Review & Editing, Formal analysis, Validation; Software. Senthilkumar Palanisamy: Investigation, Formal analysis, Validation. Barathi Diravidamani: Conceptualization, Formal analysis, Writing - Review & Editing. Priyadharsan Arumugam: Conceptualization, Formal analysis, writing. Ranjith Rajendran: Conceptualization, Formal analysis, Visualization.

Corresponding authors

Correspondence to Priyadharsan Arumugam or Ranjith Rajendran.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Publishing Ethics Policy.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunnamareddy, M., Natchimuthu, K., Tangavelu, K. et al. Enhanced visible light photocatalytic degradation of methylene blue dye using efficient Mg/S co-doped TiO2 nanoparticles. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04278-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04278-7

Keywords

Navigation