Skip to main content
Log in

Eco-friendly phytofabrication of silver nanoparticles using aqueous extract of Aristolochia bracteolata Lam: its antioxidant potential, antibacterial activities against clinical pathogens and malarial larvicidal effects

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The silver nitrate was reduced into silver nanoparticles by using the Aristolochia bracteolata plant aqueous extract. The green-synthesized nanoparticles were characterized through UV–Vis spectrophotometry, FTIR, EDAX, XRD, and TEM analysis. Results of TEM analysis clearly show that synthesized AgNP size range is 6 to 20 nm. The average particle size and zeta potential value was determined and found to be 16.7 nm and − 24.2 mV, respectively. The silver nanoparticles showed remarkable antibacterial, DPPH, ABTS, and FRAP activity. Silver nanoparticles exhibited strong antiradical effectiveness with minimal concentration. AgNPs had a dose-dependent effect on Anopheles stephensi larvae, with LC50 values of 21.3, 45.5, 12.7, and 7.9 and LC90 values of 32.4, 65.3, 20.1, and 15.4 µg/mL, respectively. The highest pupal activity was observed at 2.0 µg/mL, with the LC50 being 4.0 and the LC90 being 9.1 µg/mL, respectively. The biotoxicity assay of A. salina shows 6.33–48.33% mortality, which was exhibited by the A. bracteolata-bioconverted AgNPs. The LC50 and LC90 values were 610.381 and 6214 µg/mL. No behavioral variations were observed. The present study provides the first scientific information on the antibacterial, larvicidal, and pupicidal properties of AgNPs produced from a leaf extract of A. bracteolata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

During the present research entities, the datasets gathered and generated from the analysis after synthesis of AgNPs using A. bracteolata and the evaluated biological results are available from the corresponding author on reasonable request.

References

  1. Sangaonkar GM, Pawar KD (2018) Colloids Surf, B 164:210–217

    Article  Google Scholar 

  2. Kannan N, Selvaraj S, Murty RV (2010) Dig J Nanomater Biostruct 5:135–140

    Google Scholar 

  3. Ghule K, Ghule AV, Liu J-Y, Ling Y-C (2006) J Nanosci Nanotechnol 6:3746–3751

    Article  Google Scholar 

  4. Song JY, Kwon E-Y, Kim BS (2010) Bioprocess Biosyst Eng 33:159–164

    Article  Google Scholar 

  5. Raleaooa PV, Roodt A, Mhlongo GG, Motaung DE, Kroon RE, Ntwaeaborwa OM (2017) Physica B 507:13–20

    Article  Google Scholar 

  6. Wang Y, Chen Z, Li N, Zhang H, Wei J (2022) Eur Polymer J 166:111025

    Article  Google Scholar 

  7. Dakshayani S, Marulasiddeshwara M, Kumar S, Golla R, Devaraja S, Hosamani R (2019) Int J Biol Macromol 131:787–797

    Article  Google Scholar 

  8. Shah M, Nawaz S, Jan H, Uddin N, Ali A, Anjum S, Giglioli-Guivarc’h N, Hano C, Abbasi BH (2020) Mater Sci Eng, C 112:110889

    Article  Google Scholar 

  9. Chahardoli A, Hajmomeni P, Ghowsi M, Qalekhani F, Shokoohinia Y, Fattahi A (2021) Global Chall 5:2100075

    Article  Google Scholar 

  10. Francis S, Joseph S, Koshy EP, Mathew B (2018) Artif Cells Nanomed Biotechnol 46:795–804

    Article  Google Scholar 

  11. Banasiuk R, Krychowiak M, Swigon D, Tomaszewicz W, Michalak A, Chylewska A, Ziabka M, Lapinski M, Koscielska B, Narajczyk M (2020) Arab J Chem 13:1415–1428

    Article  Google Scholar 

  12. Zonooz NF, Salouti M (2011) Scientia Iranica 18:1631–1635

    Article  Google Scholar 

  13. Awwad AM, Salem NM, Abdeen AO (2013) Int J Ind Chem 4:1–6

    Article  Google Scholar 

  14. UNESCO (1996) DocumentCLT/DEC/PRO-1996, 129.

  15. Kulkarni N, Muddapur U (2014) J Nanotechnol 2014

  16. Gnanasekar S, Kuberan R, Ravindran K, Sivaramakrishnan S (2014) Aristolochia indica L. mediated synthesis of nano-silver particles for its antimicrobial activity against human pathogens.

  17. Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang J-S, Wang L, Nicoletti M (2015) Res Vet Sci 102:127–135

    Article  Google Scholar 

  18. Balashanmugam P, Balakumaran M, Murugan R, Dhanapal K, Kalaichelvan P (2016) Microbiol Res 192:52–64

    Article  Google Scholar 

  19. Fatimah I (2016) J Adv Res 7:961–969

    Article  Google Scholar 

  20. Singh AK, Tiwari R, Kumar V, Singh P, Khadim SR, Tiwari A, Srivastava V, Hasan S, Asthana R (2017) J Photochem Photobiol, B 166:202–211

    Article  Google Scholar 

  21. Govindarajan M, Rajeswary M, Muthukumaran U, Hoti S, Khater HF, Benelli G (2016) J Photochem Photobiol, B 161:482–489

    Article  Google Scholar 

  22. Bhuvaneswari R, Xavier RJ, Arumugam M (2016) J King Saud Univ-Sci 28:318–323

    Article  Google Scholar 

  23. Govindarajan M, Rajeswary M, Hoti S, Murugan K, Kovendan K, Arivoli S, Benelli G (2016) J Asia-Pac Entomol 19:51–58

    Article  Google Scholar 

  24. Pavithra Bharathi V, Ragavendran C, Murugan N, Natarajan D (2017) Artif Cells Nanomed Biotechnol 45:1568–1580

    Article  Google Scholar 

  25. Kovendan K, Chandramohan B, Dinesh D, Abirami D, Vijayan P, Govindarajan M, Vincent S, Benelli G (2016) J Asia-Pac Entomol 19:1001–1007

    Article  Google Scholar 

  26. da Silva Ferreira V, ConzFerreira ME, Lima LMT, Frasés S, de Souza W, Sant’Anna C (2017) Enzym Microb Technol 97:114–121

    Article  Google Scholar 

  27. Santhosh SB, Ragavendran C, Natarajan D (2015) J Photochem Photobiol B 153:184–190

    Article  Google Scholar 

  28. Pradeepa V, Sathish-Narayanan S, Kirubakaran SA, Thanigaivel A, Senthil-Nathan S (2015) Exp Parasitol 153:8–16

    Article  Google Scholar 

  29. Narayanan M, Priya S, Natarajan D, Alahmadi TA, Alharbi SA, Krishnan R, Chi NTL, Pugazhendhi A (2022) Process Biochemistry

  30. Chitme HR, Patel NP (2009) The Open Natural Products Journal, 2.

  31. Chitme HR, Malipatil M, Chandrashekhar V, Prashant P (2010)

  32. Devi K, Kanimozhi S, Suganyadevi P (2011) J Pharm Res 4:1509–1514

    Google Scholar 

  33. Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kamala-Kannan S, Kim J-H (1977) Int J Nanomed 2015:10

    Google Scholar 

  34. Prabu HJ, Johnson I (2015) Karbala Int J Mod Sci 1:237–246

    Article  Google Scholar 

  35. Kanipandian N, Kannan S, Ramesh R, Subramanian P, Thirumurugan R (2014) Mater Res Bull 49:494–502

    Article  Google Scholar 

  36. Ramalingam V, Rajaram R, PremKumar C, Santhanam P, Dhinesh P, Vinothkumar S, Kaleshkumar K (2014) J Basic Microbiol 54:928–936

    Article  Google Scholar 

  37. Chattopadhyay S, Dash SK, Ghosh T, Das S, Tripathy S, Mandal D, Das D, Pramanik P, Roy S (2013) J Biol Inorg Chem 18:957–973

    Article  Google Scholar 

  38. Moorthi PV, Balasubramanian C, Mohan S (2015) Appl Biochem Biotechnol 175:135–140

    Article  Google Scholar 

  39. Patra JK, Das G, Baek K-H (2016) J Photochem Photobiol, B 161:200–210

    Article  Google Scholar 

  40. Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén ADJP, Tapia-Pérez H, Castañón GM (2008) Nanomed Nanotechnol Biol Med 4:237–240

    Article  Google Scholar 

  41. Martínez-Castañon G-A, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F (2008) J Nanopart Res 10:1343–1348

    Article  Google Scholar 

  42. Rajoka MSR, Mehwish HM, Zhang H, Ashraf M, Fang H, Zeng X, Wu Y, Khurshid M, Zhao L, He Z (2020) Colloids Surf B 186:110734

    Article  Google Scholar 

  43. Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Kapildev G, Manickavasagam M, Thajuddin N, Premkumar K (2013) Colloids Surf B 106:86–92

    Article  Google Scholar 

  44. Nazir M, Tungmunnithum D, Bose S, Drouet S, Garros L, Giglioli-Guivarc’h N, Abbasi BH, Hano C (2019) J Agric Food Chem 67:1847–1859

    Article  Google Scholar 

  45. WHO (2005) WHO, World Health Organization. https://apps.who.int/iris/handle/10665/69101, 39p

  46. Mollick MMR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B, Maity D, Mondal D, Pattanayak S, Roy S, Chakraborty M (2019) Arab J Chem 12:2572–2584

    Article  Google Scholar 

  47. Lateef A, Azeez M, Asafa T, Yekeen T, Akinboro A, Oladipo I, Ajetomobi F, Gueguim-Kana E, Beukes L (2015) BioNanoScience 5:196–205

    Article  Google Scholar 

  48. Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D (2014) Arab J Chem 7:1131–1139

    Article  Google Scholar 

  49. Gopinath V, Priyadarshini S, MubarakAli D, Loke MF, Thajuddin N, Alharbi NS, Yadavalli T, Alagiri M, Vadivelu J (2019) Arab J Chem 12:33–40

    Article  Google Scholar 

  50. Loganathan S, Selvam K, Padmavathi G, Shivakumar MS, Senthil-Nathan S, Sumathi AG, Almutairi SM (2022) Biological synthesis and characterization of Passiflora subpeltata Ortega aqueous leaf extract in silver nanoparticles and their evaluation of antibacterial, antioxidant, anti-cancer and larvicidal activities. J King Saud Univ-Sci 34(3):101846

    Article  Google Scholar 

  51. Dash SS, Samanta S, Dey S, Giri B, Dash SK (2020) Rapid green synthesis of biogenic silver nanoparticles using Cinnamomum tamala leaf extract and its potential antimicrobial application against clinically isolated multidrug-resistant bacterial strains. Biol Trace Elem Res 198(2):681–696

    Article  Google Scholar 

  52. Mallikarjuna K, Sushma NJ, Narasimha G, Manoj L, Raju BDP (2014) Arab J Chem 7:1099–1103

    Article  Google Scholar 

  53. Rajkuberan C, Prabukumar S, Sathishkumar G, Wilson A, Ravindran K, Sivaramakrishnan S (2017) J Saudi Chem Soc 21:911–919

    Article  Google Scholar 

  54. Mahendran G, Kumari BR (2016) Food Sci Human Wellness 5:207–218

    Article  Google Scholar 

  55. Phongtongpasuk S, Poadang S, Yongvanich N (2016) Energy Procedia 89:239–247

    Article  Google Scholar 

  56. Bagherzade G, Tavakoli MM, Namaei MH (2017) Asian Pac J Trop Biomed 7:227–233

    Article  Google Scholar 

  57. Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN (2010) Adv Sci Lett 3:138–143

    Article  Google Scholar 

  58. Lateef A, Ojo SA, Oladejo SM (2016) Process Biochem 51:1406–1412

    Article  Google Scholar 

  59. Kumar PV, Pammi S, Kollu P, Satyanarayana K, Shameem U (2014) Ind Crops Prod 52:562–566

    Article  Google Scholar 

  60. Mehmood A, Murtaza G, Bhatti TM, Kausar R (2017) Arab J Chem 10:S3048–S3053

    Article  Google Scholar 

  61. Kaur J, Anwer MK, Sartaj A, Panda BP, Ali A, Zafar A, Kumar V, Gilani SJ, Kala C, Taleuzzaman M (2022) ZnO nanoparticles of Rubia cordifolia extract formulation developed and optimized with qbd application, considering ex vivo skin permeation, antimicrobial and antioxidant properties. Molecules 27:1450. https://doi.org/10.3390/molecules27041450

    Article  Google Scholar 

  62. Shameli K, Ahmad MB, Zargar M, Yunus WMZW, Rustaiyan A, Ibrahim NA (2011) Int J Nanomed 6:581

    Article  Google Scholar 

  63. Kuppurangan G, Karuppasamy B, Nagarajan K, Krishnasamy Sekar R, Viswaprakash N, Ramasamy T (2016) Appl Nanosci 6:973–982

    Article  Google Scholar 

  64. Khan FU, Chen Y, Khan NU, Khan ZUH, Khan AU, Ahmad A, Tahir K, Wang L, Khan MR, Wan P (2016) J Photochem Photobiol B 164:344–351

    Article  Google Scholar 

  65. AlQahtani FS, AlShebly MM, Govindarajan M, Senthilmurugan S, Vijayan P, Benelli G (2017) J Asia-Pac Entomol 20:157–164

    Article  Google Scholar 

  66. Salari Z, Danafar F, Dabaghi S, Ataei SA (2016) J Saudi Chem Soc 20:459–464

    Article  Google Scholar 

  67. Abboud Y, Eddahbi A, El Bouari A, Aitenneite H, Brouzi K, Mouslim J (2013) J Nanostruct Chem 3:1–7

    Article  Google Scholar 

  68. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) J Adv Res 7:17–28

    Article  Google Scholar 

  69. Guidelli EJ, Ramos AP, Zaniquelli MED, Baffa O (2011) Spectrochim Acta Part A Mol Biomol Spectrosc 82:140–145

    Article  Google Scholar 

  70. Dangi S, Gupta A, Gupta DK, Singh S, Parajuli N (2020) Green synthesis of silver nanoparticles using aqueous root extract of Berberis asiatica and evaluation of their antibacterial activity. Chem Data Collect 28:100411

    Article  Google Scholar 

  71. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Curr Nanosci 4:141–144

    Article  Google Scholar 

  72. Moyo M, Gomba M, Nharingo T (2015) Int J Ind Chem 6:329–338

    Article  Google Scholar 

  73. Su H-L, Chou C-C, Hung D-J, Lin S-H, Pao I-C, Lin J-H, Huang F-L, Dong R-X, Lin J-J (2009) Biomaterials 30:5979–5987

    Article  Google Scholar 

  74. AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) ACS nano 3:279–290

    Article  Google Scholar 

  75. Marambio-Jones C, Hoek E (2010) J Nanopart Res 12:1531–1551

    Article  Google Scholar 

  76. Lokina S, Stephen A, Kaviyarasan V, Arulvasu C, Narayanan V (2014) Eur J Med Chem 76:256–263

    Article  Google Scholar 

  77. Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311

    Article  Google Scholar 

  78. Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1555

    Article  Google Scholar 

  79. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6(4):74

    Article  Google Scholar 

  80. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  Google Scholar 

  81. Makkar S, Aggarwal A, Pasricha S, Kapur I (2014) To evaluate the antibacterial properties of silver nano particle based irrigant as endodontic root canal irrigant. Int J Dent Health Sci 1(4):485–492

    Google Scholar 

  82. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):1–20

    Article  Google Scholar 

  83. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Roy S (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10(6):862–876

    Article  Google Scholar 

  84. Dash SS, Sen IK, Dash SK (2021) A review on the plant extract mediated green syntheses of gold nanoparticles and its anti-microbial, anti-cancer and catalytic applications. Int Nano Lett 1–20.

  85. Samanta S, Banerjee J, Das B, Mandal J, Chatterjee S, Ali KM, Dash SK (2022) Antibacterial potency of cytocompatible chitosan-decorated biogenic silver nanoparticles and molecular insights towards cell-particle interaction. Int J Biol Macromol 219:919–939

    Article  Google Scholar 

  86. Mollick MMR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B, Maity D, Chattopadhyay D (2019) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem 12(8):2572–2584

    Article  Google Scholar 

  87. Parveen M, Ahmad F, Malla AM, Azaz S (2016) Appl Nanosci 6:267–276

    Article  Google Scholar 

  88. Arif R, Uddin R (2021) Med Devices Sensors 4:e10158

    Article  Google Scholar 

  89. Bharathi D, Bhuvaneshwari V (2019) BioNanoScience 9:155–163

    Article  Google Scholar 

  90. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, Dinesh D, Chandramohan B, Suresh U, Nicoletti M (2015) Environ Sci Pollut Res 22:20067–20083

    Article  Google Scholar 

  91. Kumar KR, Nattuthurai N, Gopinath P, Mariappan T (2015) Parasitol Res 114:411–417

    Article  Google Scholar 

  92. Velayutham K, Ramanibai R (2016) J Basic Appl Zool 74:16–22

    Article  Google Scholar 

  93. Al-Mekhlafi FA (2018) Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 25:52–56

    Article  Google Scholar 

  94. Shahzad K, Manzoor F (2019) Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol 1–11

  95. Banumathi B, Vaseeharan B, Chinnasamy T, Vijayakumar S, Govindarajan M, Alharbi NS, Benelli G (2017) Euphorbia rothiana-fabricated Ag nanoparticles showed high toxicity on Aedes aegypti larvae and growth inhibition on microbial pathogens: a focus on morphological changes in Mosquitoes and Antibiofilm potential against Bacteria. J Clust Sci 28(5):2857–2872

    Article  Google Scholar 

  96. Sultana N, Raul PK, Goswami D, Das B, Gogoi HK, Raju PS (2018) Nanoweapon: control of mosquito breeding using carbon-dot-silver nanohybrid as a biolarvicide. Environ Chem Lett 16:1017–1023

    Article  Google Scholar 

  97. An HJ, Sarkheil M, Park HS, Yu IJ, Johari SA (2019) Comp Biochem Physiol C Toxicol Pharmacol 218:62–69

    Article  Google Scholar 

  98. Wilson JJ, Lakshmi MP, Sivakumar T, Ponmanickam P, Sevarkodiyone S (2022) South African Journal of Botany

  99. Ozkan Y, Altinok I, Ilhan H, Sokmen M (2016) Bull Environ Contam Toxicol 96:36–42

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledged the Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India, for providing the infrastructural facility to carry out this research work. We thank the Department of Physics, Periyar University, Salem, for XRD and FTIR analyses of samples. Our special gratitude goes to the Indian Institute of Technology (IIT, Chennai), Tamil Nadu, for analyzing the sample (TEM and EDX). This research work was partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

CR, GB, JR, and CK all contributed to the experiment’s overall design and planning, larval data processing, and result interpretation. CT, CV, and TK were used throughout the antibacterial activity, from pathogen collection through interpretation. CR and TJ conducted the toxicology testing on Brine Shrimp at its labs. In order to conduct the mosquito larvicidal toxicity test, CRI was used. The manuscript was written by CR, GB, SSN, PV, and CK. All authors, with the exception of WJGMP, PK, and CR, have reviewed and approved the final manuscript for publication.

Corresponding authors

Correspondence to Ragavendran Chinnasamy or Patcharin Krutmuang.

Ethics declarations

Ethical approval

N/A

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 462 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnasamy, R., Chinnaperumal, K., Cherian, T. et al. Eco-friendly phytofabrication of silver nanoparticles using aqueous extract of Aristolochia bracteolata Lam: its antioxidant potential, antibacterial activities against clinical pathogens and malarial larvicidal effects. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03750-8

Keywords

Navigation