Skip to main content
Log in

Biosynthesis of xylitol by cell immobilization: an insight

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Xylitol is one of the value-added polyalcohols with diverse applications in the food, nutraceuticals, cosmetic, and pharmaceutical industries. Commercial xylitol production is extensively carried out via chemical technology through catalytic xylose dehydrogenation under high temperatures and pressure. The biotechnological synthesis of xylitol from lignocellulosic biomass is a promising and sustainable substitute for chemical xylitol synthesis, which requires strong reaction conditions and removal of the undesirable coproducts produced during the process. Numerous reviews target culture conditions and metabolic pathways in recombinant and wild xylitol-producing organisms for enhanced xylitol accretion. However, fewer studies focus on the engineering and bioprocess aspects essential for large-scale xylitol production. This review emphasizes recent advancements in xylitol bioproduction using immobilization methods. Cell immobilization improves biocatalyst reusability, stability, and tolerance against inhibitors, decreases process costs, and denotes a fundamental prerequisite for industrial application. The main immobilization techniques, mode of operations, and bioreactors employed for xylitol bioproduction using immobilization have been comprehensively summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Venkateswar Rao L, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310. https://doi.org/10.1016/j.biortech.2016.04.092

    Article  Google Scholar 

  2. Werpy T, Petersen G, Aden A, et al (2004) Top value added chemicals from biomass, volume 1: results of screening for potential candidates from sugars and synthesis gas. US Department of Energy. Pacific Northwest Natl Lab Dep Energy Oak Ridge, TN

  3. Chen X, Jiang ZH, Chen S, Qin W (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6:834–844. https://doi.org/10.7150/ijbs.6.834

    Article  Google Scholar 

  4. Dalli SS, Patel M, Rakshit SK et al (2012) Overview on commercial production of xylitol, economic analysis and market trends. Biomass Bioenerg 56:924–943. https://doi.org/10.1080/07388551.2019.1640658

    Article  Google Scholar 

  5. Jain V, Ghosh S (2021) Biotransformation of lignocellulosic biomass to xylitol: an overview. Biomass Convers Biorefinery 1–19. https://doi.org/10.1007/s13399-021-01904-0

  6. Lapponi MJ, Méndez MB, Trelles JA, Rivero CW (2022) Cell immobilization strategies for biotransformations. Curr Opin Green Sustain Chem 33:100565. https://doi.org/10.1016/j.cogsc.2021.100565

    Article  Google Scholar 

  7. Salgado JM, Converti A, Domínguez JM (2012) Fermentation strategies explored for xylitol production. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_7

  8. Trelles JA, Lapponi MJ (2017) Immobilization techniques applied to the development of biocatalysts for the synthesis of nucleoside analogue derivatives. Curr Pharm Des 23:6879–6897. https://doi.org/10.2174/1381612824666171204102204

    Article  Google Scholar 

  9. Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082. https://doi.org/10.1007/s00253-015-6390-y

    Article  Google Scholar 

  10. Silva SS, Mussatto SI, Santos JC et al (2007) Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biochem Biotechnol 141:215–227. https://doi.org/10.1007/BF02729063

    Article  Google Scholar 

  11. Moreno-García J, García-Martínez T, Mauricio JC, Moreno J (2018) Yeast immobilization systems for alcoholic wine fermentations: actual trends and future perspectives. Front Microbiol 9:241. https://doi.org/10.3389/fmicb.2018.00241

    Article  Google Scholar 

  12. Giese EC, Silva DDV, Costa AFM et al (2020) Immobilized microbial nanoparticles for biosorption. Crit Rev Biotechnol 40:653–666. https://doi.org/10.1080/07388551.2020.1751583

    Article  Google Scholar 

  13. Sekoai PT, Awosusi AA, Yoro KO et al (2018) Microbial cell immobilization in biohydrogen production: a short overview. Crit Rev Biotechnol 38:157–171. https://doi.org/10.1080/07388551.2017.1312274

    Article  Google Scholar 

  14. Verbelen PJ, De Schutter DP, Delvaux F et al (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525. https://doi.org/10.1007/s10529-006-9132-5

    Article  Google Scholar 

  15. Santos JC, Mussatto SI, Dragone G et al (2005) Evaluation of porous glass and zeolite as cells carriers for xylitol production from sugarcane bagasse hydrolysate. Biochem Eng J 23:1–9. https://doi.org/10.1016/j.bej.2004.10.001

    Article  Google Scholar 

  16. Santos DT, Sarrouh BF, Rivaldi JD et al (2008) Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. J Food Eng 86:542–548. https://doi.org/10.1016/j.jfoodeng.2007.11.004

    Article  Google Scholar 

  17. Kourkoutas Y, Bekatorou A, Banat IM et al (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397. https://doi.org/10.1016/j.fm.2003.10.005

    Article  Google Scholar 

  18. Nedovic VA, Cukalovic IL, Bezbradica D et al (2005) New porous matrices and procedures for yeast cell immobilisation for primary beer fermentation. In: Proceedings of the 30th European Brewery Convention. Prague.401–413.

  19. Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319. https://doi.org/10.1016/S0734-9750(00)00040-9

    Article  Google Scholar 

  20. Takahashi T, Takayama K, Machida Y, Nagai T (1990) Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm 61:35–41. https://doi.org/10.1016/0378-5173(90)90041-2

    Article  Google Scholar 

  21. Pérez-Bibbins B, Salgado JM, Torrado A et al (2013) Culture parameters affecting xylitol production by Debaryomyces hansenii immobilized in alginate beads. Process Biochem 48:387–397. https://doi.org/10.1016/j.procbio.2013.01.006

    Article  Google Scholar 

  22. Carvalho W, Silva SS, Santos JC, Converti A (2003) Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb Technol 32:553–559. https://doi.org/10.1016/S0141-0229(03)00007-3

    Article  Google Scholar 

  23. Carvalho W, Santos JC, Canilha L et al (2005) Xylitol production from sugarcane bagasse hydrolysate: metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31. https://doi.org/10.1016/j.bej.2005.03.006

    Article  Google Scholar 

  24. Willaert R, Verachtert H, van den Bremt K, Delvaux F, Derdelinckx G (2005) Bioflavouring of Foods and Beverages. In: Nedović, V., Willaert, R. (eds) Applications of cell immobilisation biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_21

  25. Zhu Y (2007) Chapter 14 - Immobilized cell fermentation for production of chemicals and fuels. In: Yang S-TBT-B for V-AP from RR (ed). Elsevier, Amsterdam, pp 373–396. https://doi.org/10.1016/B978-044452114-9/50015-3

  26. Jin L-Q, Yang B, Xu W et al (2019) Immobilization of recombinant Escherichia coli whole cells harboring xylose reductase and glucose dehydrogenase for xylitol production from xylose mother liquor. Bioresour Technol 285:121344. https://doi.org/10.1016/j.biortech.2019.121344

    Article  Google Scholar 

  27. Pandele AM, Iovu H, Orbeci C et al (2020) Surface modified cellulose acetate membranes for the reactive retention of tetracycline. Sep Purif Technol 249:117145. https://doi.org/10.1016/j.seppur.2020.117145

    Article  Google Scholar 

  28. Honigberg SM (2011) Cell signals, cell contacts, and the organization of yeast communities. Eukaryot Cell 10:466–473. https://doi.org/10.1128/EC.00313-10

    Article  Google Scholar 

  29. Willaert RG (2011) 12 cell immobilization. Ferment Microbiol Biotechnol 313.

  30. Vyas VK, Kuchin S, Berkey CD, Carlson M (2003) Snf1 kinases with different β-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol 23:1341–1348. https://doi.org/10.1128/MCB.23.4.1341-1348.2003

    Article  Google Scholar 

  31. Green CB, Cheng G, Chandra J et al (2004) RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275

    Article  Google Scholar 

  32. Tang Y-Q, An M-Z, Zhong Y-L et al (2010) Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. J Biosci Bioeng 109:41–46. https://doi.org/10.1016/j.jbiosc.2009.07.002

    Article  Google Scholar 

  33. Tizazu BZ, Roy K, Moholkar VS (2018) Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Bioresour Technol 268:247–258. https://doi.org/10.1016/j.biortech.2018.07.141

    Article  Google Scholar 

  34. Chacón-Navarrete H, Martín C, Moreno-García J (2021) Yeast immobilization systems for second-generation ethanol production: actual trends and future perspectives. Biofuels Bioprod Bioref 15:1549–1565. https://doi.org/10.1002/bbb.2250

    Article  Google Scholar 

  35. Soleimani M, Tabil L (2014) Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochem Eng J 82:166–173. https://doi.org/10.1016/j.bej.2013.11.011

    Article  Google Scholar 

  36. Da Silva SS, Afschar AS (1994) Microbial production of xylitol from D-xylose using Candida tropicalis. Bioprocess Eng 11:129–134. https://doi.org/10.1007/BF00518734

    Article  Google Scholar 

  37. da Silva SS, Santos JC, Carvalho W et al (2003) Use of a fluidized bed reactor operated in semi-continuous mode for xylose-to-xylitol conversion by Candida guilliermondii immobilized on porous glass. Process Biochem 38:903–907. https://doi.org/10.1016/S0032-9592(02)00177-2

    Article  Google Scholar 

  38. El-Meligy MG, Mohamed SH, Mahani RM (2010) Study mechanical, swelling and dielectric properties of prehydrolysed banana fiber–waste polyurethane foam composites. Carbohydr Polym 80:366–372. https://doi.org/10.1016/j.carbpol.2009.11.034

    Article  Google Scholar 

  39. Wang L, Wu D, Tang P et al (2012) Xylitol production from corncob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Carbohydr Polym 90:1106–1113. https://doi.org/10.1016/j.carbpol.2012.06.050

    Article  Google Scholar 

  40. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8:92. https://doi.org/10.3390/catal8020092

    Article  Google Scholar 

  41. Yewale T, Panchwagh S, Rajagopalan S et al (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6:1–10. https://doi.org/10.1007/s13205-016-0388-8

    Article  Google Scholar 

  42. Boshagh F, Rostami K, Moazami N (2019) Immobilization of Enterobacter aerogenes on carbon fiber and activated carbon to study hydrogen production enhancement. Biochem Eng J 144:64–72. https://doi.org/10.1016/j.bej.2019.01.014

    Article  Google Scholar 

  43. Liu Q, Zhang C, Bao Y, Dai G (2018) Carbon fibers with a nano-hydroxyapatite coating as an excellent biofilm support for bioreactors. Appl Surf Sci 443:255–265. https://doi.org/10.1016/j.apsusc.2018.02.120

    Article  Google Scholar 

  44. Valcárcel M, Cárdenas S, Simonet BM (2007) Role of carbon nanotubes in analytical science. Anal Chem 79:4788–4797. https://doi.org/10.1021/ac070196m

    Article  Google Scholar 

  45. Abd Rahman NH, Jahim JM, Munaim MSA et al (2020) Immobilization of recombinant Escherichia coli on multiwalled carbon nanotubes for xylitol production. Enzyme Microb Technol 135:109495. https://doi.org/10.1016/j.enzmictec.2019.109495

    Article  Google Scholar 

  46. Wang L, Yin Y, Zhang S et al (2019) A rapid microwave-assisted phosphoric-acid treatment on carbon fiber surface for enhanced cell immobilization in xylitol fermentation. Colloids Surfaces B Biointerfaces 175:697–702. https://doi.org/10.1016/j.colsurfb.2018.12.045

    Article  Google Scholar 

  47. Wang L, Jia F, Wu D et al (2020) In-situ growth of graphene on carbon fibers for enhanced cell immobilization and xylitol fermentation. Appl Surf Sci 527:146793. https://doi.org/10.1016/j.apsusc.2020.146793

    Article  Google Scholar 

  48. Wang L, Shen Y, Zhang Y et al (2021) A novel surface treatment of carbon fiber with Fenton reagent oxidization for improved cells immobilization and xylitol fermentation. Microporous Mesoporous Mater 325:111318. https://doi.org/10.1016/j.micromeso.2021.111318

    Article  Google Scholar 

  49. Dominquez JM (1998) Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol Lett 20:53–56

    Article  Google Scholar 

  50. Guleria P, Kaur S, Sidana A, Yadav SK (2022) Xylitol production from rice straw hemicellulosic hydrolysate by Candida tropicalis GS18 immobilized on bacterial cellulose-sodium alginate matrix. Biomass Convers Biorefinery 1–11. https://doi.org/10.1007/s13399-022-02986-0

  51. Yahashi Y, Hatsu M, Horitsu H et al (1996) D-glucose feeding for improvement of xylitol productivity from D-xylose using Candida tropicalis immobilized on a non-woven fabric. Biotechnol Lett 18:1395–1400. https://doi.org/10.1007/BF00129342

    Article  Google Scholar 

  52. Pérez-Bibbins B, de Souza Oliveira RP, Torrado A et al (2014) Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads. Appl Microbiol Biotechnol 98:151–161. https://doi.org/10.1007/s00253-013-5280-4

    Article  Google Scholar 

  53. Ding X (2011) Fermentation of xylitol using immobilized Candida sp. ZU04 cells in three-phase fluidized-bed bioreactor. In: 2011 International Conference on Remote Sensing, Environment and Transportation Engineering. IEEE, 7591–7593.

  54. Nishio N, Sugawa K, Hayase N, Nagai S (1989) Conversion of d-xylose into xylitol by immobilized cells of Candida pelliculosa and Methanobacterium sp. HU J Ferment Bioeng 67:356–360. https://doi.org/10.1016/0922-338X(89)90255-9

    Article  Google Scholar 

  55. Domínguez JM, Cruz JM, Roca E et al (1999) Xylitol production from wood hydrolyzates by entrapped Debaryomyces hansenii and Candida guilliermondii cells. Appl Biochem Biotechnol 81:119–130. https://doi.org/10.1385/ABAB:81:2:119

    Article  Google Scholar 

  56. Prado CA et al (2022) An overview of different approaches and bioreactors for xylitol production by fermentation. In: de Almeida Felipe, M.d.G., Chandel, A.K. (eds) Current advances in biotechnological production of xylitol. Springer, Cham. https://doi.org/10.1007/978-3-031-04942-2_5

  57. Yewale T, Panchwagh S, Sawale S et al (2017) Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech 7:. https://doi.org/10.1007/s13205-017-0700-2

  58. Misra S, Raghuwanshi S, Saxena RK (2013) Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr Polym 92:1596–1601. https://doi.org/10.1016/j.carbpol.2012.11.033

    Article  Google Scholar 

  59. Pérez-Bibbins B, Torrado-Agrasar A, Salgado JM et al (2016) Xylitol production in immobilized cultures: a recent review. Crit Rev Biotechnol 36:691–704. https://doi.org/10.3109/07388551.2015.1004660

    Article  Google Scholar 

  60. Roca E, Meinander N, Hahn-Hägerdal B (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. Biotechnol Bioeng 51:317–326. https://doi.org/10.1002/(SICI)1097-0290(19960805)51:3%3c317

    Article  Google Scholar 

  61. Sarrouh BF, da Silva SS (2008) Evaluation of the performance of a three-phase fluidized bed reactor with immobilized yeast cells for the biotechnological production of xylitol. Int J Chem React Eng 6(1). https://doi.org/10.2202/1542-6580.1816

  62. Sarrouh B, Da Silva SS (2013) Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Appl Biochem Biotechnol 169:2101–2110. https://doi.org/10.1007/s12010-013-0127-0

    Article  Google Scholar 

  63. Branco RF, Santos JC, Murakami LY et al (2007) Xylitol production in a bubble column bioreactor: influence of the aeration rate and immobilized system concentration. Process Biochem 42:258–262. https://doi.org/10.1016/j.procbio.2006.07.010

    Article  Google Scholar 

  64. Kilonzo P, Margaritis A, Bergougnou M (2009) Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. J Biotechnol 143:60–68. https://doi.org/10.1016/j.jbiotec.2009.06.007

    Article  Google Scholar 

  65. Felipe Hernández-Pérez A, de Arruda PV, Sene L et al (2019) Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 39:924–943. https://doi.org/10.1080/07388551.2019.1640658

    Article  Google Scholar 

  66. Koutinas AA, Papapostolou H, Dimitrellou D et al (2009) Whey valorisation: a complete and novel technology development for dairy industry starter culture production. Bioresour Technol 100:3734–3739. https://doi.org/10.1016/j.biortech.2009.01.058

    Article  Google Scholar 

  67. Gabardo S, Rech R, Ayub MAZ (2012) Performance of different immobilized-cell systems to efficiently produce ethanol from whey: fluidized batch, packed-bed and fluidized continuous bioreactors. J Chem Technol Biotechnol 87:1194–1201. https://doi.org/10.1002/jctb.3749

    Article  Google Scholar 

  68. da Cunha MAA, Converti A, Santos JC et al (2009) PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. Appl Biochem Biotechnol 157:527–537. https://doi.org/10.1007/s12010-008-8301-5

    Article  Google Scholar 

  69. Liaw W-C, Chen C-S, Chang W-S, Chen K-P (2008) Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng 105:97–105. https://doi.org/10.1263/jbb.105.97

    Article  Google Scholar 

  70. Prakash G, Varma AJ, Prabhune A et al (2011) Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308. https://doi.org/10.1016/j.biortech.2010.10.074

    Article  Google Scholar 

  71. Deng L-H, Tang Y, Liu Y (2014) Detoxification of corncob acid hydrolysate with SAA pretreatment and xylitol production by immobilized Candida tropicalis. Sci World J 2014. https://doi.org/10.1155/2014/214632

Download references

Acknowledgements

Authors gratefully acknowledge the constant support provided by Indian Institute of Technology Roorkee (IITR) and Ministry of Human Resource and Development (MHRD).

Funding

The financial assistance for this work was provided by Indian Institute of Technology Roorkee (IITR) and Ministry of Human Resource and Development (MHRD).

Author information

Authors and Affiliations

Authors

Contributions

Vasundhara Jain drafted the manuscript. Vasundhara Jain, Aditi Awasthi, and Sanjoy Ghosh revised and modified the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sanjoy Ghosh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V., Awasthi, A. & Ghosh, S. Biosynthesis of xylitol by cell immobilization: an insight. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-022-03724-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03724-2

Keywords

Navigation