Skip to main content

Advertisement

Log in

Comparative study on pyrolysis characteristics and kinetics of Indian almond fruit and Gracilaria changii seaweed by thermogravimetric analysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, the pyrolysis characteristics and kinetic analysis of waste Indian almond fruit (IAF) and the algae Gracilaria changii (G. changii) biomass were investigated using a thermogravimetric analysis (TGA) for the potential source of bioenergy. Four kinetic model techniques as Kissinger, Friedman, Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) were used to evaluate the kinetic characteristics at three different heating rates of 10, 20 and 30 °C/min. The thermal degradation of the IAF and G. changii may be classified into three phases, according to TG/DTG data (phase I: 25 to 170 °C, phase II: 170 to 480 °C and phase III: 480 to 700 °C). The activation energies obtained by the Kissinger model, KAS model, FWO model and Friedman model are 67.55 kJ/mol (IAF) and 191.42 kJ/mol (G. changii), 61.81 kJ/mol (IAF) and 189.67 kJ/mol (G. changii), 69.34 kJ/mol (IAF) and 171.67 kJ/mol (G. changii) and 29.56 kJ/mol (IAF) and 153.03 kJ/mol (G. changii) respectively. There is good agreement between the estimated kinetic parameters and the interval conversional fraction. The kinetic research results can be used to simulate devolatilization and generate new business models for the thermochemical conversion process. Due to the negative value of △G, predictions of the thermal stability and decomposition of the biomass levels are also estimated. Change in enthalpy, entropy and Gibbs free energy determined was in good agreement for all four kinetic models. This study found that the ultimate utilisation of Gracilaria changii (G. changii) biomass was greater in the synthesis of biofuel than IAF and some other agricultural biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Zou C, Zhao Q, Zhang G, Xiong B (2016) Energy revolution: from a fossil energy era to a new energy era. Nat Gas Ind B 3:1–11. https://doi.org/10.1016/J.NGIB.2016.02.001

    Article  Google Scholar 

  2. Yong KJ, Wu TY (2022) Second-generation bioenergy from oilseed crop residues: recent technologies, techno-economic assessments and policies. Energy Convers Manag 267:115869. https://doi.org/10.1016/J.ENCONMAN.2022.115869

    Article  Google Scholar 

  3. Omri E, Chtourou N, Bazin D (2022) Technological, economic, institutional, and psychosocial aspects of the transition to renewable energies: a critical literature review of a multidimensional process. Renew Energy Focus. https://doi.org/10.1016/J.REF.2022.08.004

    Article  Google Scholar 

  4. Ali M, Saleem M, Khan Z, Watson IA (2019) The use of crop residues for biofuel production. Biomass, Biopolym Mater Bioenergy Constr Biomed other Ind Appl 369–395.https://doi.org/10.1016/B978-0-08-102426-3.00016-3

  5. Osman AI, Mehta N, Elgarahy AM et al (2021) (2021) Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Lett 196(19):4075–4118. https://doi.org/10.1007/S10311-021-01273-0

    Article  Google Scholar 

  6. Ross JRH (2019) Catalysis in biomass conversion. Contemp Catal 343–364.https://doi.org/10.1016/B978-0-444-63474-0.00015-1

  7. Xu L, Jiang L, Zhang H, et al (2020) Introduction to pyrolysis as a thermo-chemical conversion technology. 3–30. https://doi.org/10.1007/978-981-15-2732-6_1

  8. Dhyani V, Bhaskar T (2019) Pyrolysis of biomass. Biomass, Biofuels, Biochem Biofuels Altern Feed Convers Process Prod Liq Gaseous Biofuels 217–244.https://doi.org/10.1016/B978-0-12-816856-1.00009-9

  9. Hameed S, Sharma A, Pareek V et al (2019) A review on biomass pyrolysis models: kinetic, network and mechanistic models. Biomass Bioenerg 123:104–122. https://doi.org/10.1016/J.BIOMBIOE.2019.02.008

    Article  Google Scholar 

  10. Battin-Leclerc F, Blurock ES, Simmie JM et al (2013) Introduction. Green Energy Technol 0:1–14. https://doi.org/10.1007/978-1-4471-5307-8_1

    Article  Google Scholar 

  11. Güleç F, Şimşek EH, Tanıker Sarı H (2022) Prediction of biomass pyrolysis mechanisms and kinetics: application of the Kalman filter. Chem Eng Technol 45:167–177. https://doi.org/10.1002/CEAT.202100229

    Article  Google Scholar 

  12. Silva LP, De Angelis CD, Bonamin F et al (2015) Terminalia catappa L.: a medicinal plant from the Caribbean pharmacopeia with anti-Helicobacter pylori and antiulcer action in experimental rodent models. J Ethnopharmacol 159:285–295. https://doi.org/10.1016/J.JEP.2014.11.025

    Article  Google Scholar 

  13. Jahurul MHA, Adeline KB, Norazlina MR et al (2022) Characterization and nutritional content of Terminalia catappa kernel and its oil from Sabah. Malaysia Appl Food Res 2:100088. https://doi.org/10.1016/J.AFRES.2022.100088

    Article  Google Scholar 

  14. dos Santos ICF, de Carvalho SHV, Solleti JI et al (2008) Studies of Terminalia catappa L. oil: characterization and biodiesel production. Bioresour Technol 99:6545–6549. https://doi.org/10.1016/J.BIORTECH.2007.11.048

    Article  Google Scholar 

  15. Suresh Kumar P, Edwin M, Bensam Raj J (2022) Pyrolysis characteristics and kinetic analysis of Indian almond fruit biomass by thermogravimetric analysis for the potential source of bioenergy. 101177/09544089221101374. https://doi.org/10.1177/09544089221101374

  16. Joseph D, Jesuretnam BR, Ramar K (2021) Thermal analysis and kinetic study of Indian almond leaf by model-free methods. 101080/1544047820211889442. https://doi.org/10.1080/15440478.2021.1889442

  17. Sunsandee N, Ramakul P, Phatanasri S, Pancharoen U (2020) Biosorption of dicloxacillin from pharmaceutical waste water using tannin from Indian almond leaf: kinetic and equilibrium studies. Biotechnol Reports 27:e00488. https://doi.org/10.1016/J.BTRE.2020.E00488

    Article  Google Scholar 

  18. Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL (2013) Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol 130:321–331. https://doi.org/10.1016/J.BIORTECH.2012.12.002

    Article  Google Scholar 

  19. Lee WK, Lim PE, Phang SM et al (2016) Agar properties of Gracilaria species (Gracilariaceae, Rhodophyta) collected from different natural habitats in Malaysia. Reg Stud Mar Sci 7:123–128. https://doi.org/10.1016/J.RSMA.2016.06.001

    Article  Google Scholar 

  20. Prasad Ammineni S, Nagaraju C, Lingaraju D et al (2017) Comparative study on the pyrolysis behaviour and kinetics of two macroalgae biomass (Gracilaria changii and Gelidium pusillum) by thermogravimetric analysis. IOP Conf Ser Mater Sci Eng 257:012037. https://doi.org/10.1088/1757-899X/257/1/012037

    Article  Google Scholar 

  21. Chan PT, Matanjun P (2017) Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem 221:302–310. https://doi.org/10.1016/J.FOODCHEM.2016.10.066

    Article  Google Scholar 

  22. Varma AK, Singh S, Rathore AK et al (2020) (2020) Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis. Biomass Convers Biorefinery 1211(12):4877–4888. https://doi.org/10.1007/S13399-020-00972-Y

    Article  Google Scholar 

  23. Ajmani A, Shahnaz T, Subbiah S, Narayanasamy S (2019) Hexavalent chromium adsorption on virgin, biochar, and chemically modified carbons prepared from Phanera vahlii fruit biomass: equilibrium, kinetics, and thermodynamics approach. Environ Sci Pollut Res Int 26:32137–32150. https://doi.org/10.1007/S11356-019-06335-Z

    Article  Google Scholar 

  24. Rahib Y, Sarh B, Chaoufi J et al (2020) (2020) Physicochemical and thermal analysis of argan fruit residues (AFRs) as a new local biomass for bioenergy production. J Therm Anal Calorim 1455(145):2405–2416. https://doi.org/10.1007/S10973-020-09804-7

    Article  Google Scholar 

  25. Odetoye TE, Afolabi TJ, Abu Bakar MS (2018) Titiloye JO (2018) Thermochemical characterization of Nigerian Jatropha curcas fruit and seed residues for biofuel production. Energy, Ecol Environ 36(3):330–337. https://doi.org/10.1007/S40974-018-0104-0

    Article  Google Scholar 

  26. Mumbach GD, Alves JLF, da Silva JCG et al (2020) (2020) Pyrolysis of cocoa shell and its bioenergy potential: evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR. Biomass Convers Biorefinery 123(12):723–739. https://doi.org/10.1007/S13399-020-01058-5

    Article  Google Scholar 

  27. Plis A, Lasek J, Skawińska A, Zuwała J (2015) Thermochemical and kinetic analysis of the pyrolysis process in Cladophora glomerata algae. J Anal Appl Pyrolysis 115:166–174. https://doi.org/10.1016/J.JAAP.2015.07.013

    Article  Google Scholar 

  28. Ali I, Bahadar A (2017) Red Sea seaweed (Sargassum spp.) pyrolysis and its devolatilization kinetics. Algal Res 21:89–97. https://doi.org/10.1016/J.ALGAL.2016.11.011

    Article  Google Scholar 

  29. Narnaware SL, Panwar NL (2022) Kinetic study on pyrolysis of mustard stalk using thermogravimetric analysis. undefined 17. https://doi.org/10.1016/J.BITEB.2021.100942

  30. Abdelouahed L, Leveneur S, Vernieres-Hassimi L et al (2017) (2017) Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J Therm Anal Calorim 1292(129):1201–1213. https://doi.org/10.1007/S10973-017-6212-9

    Article  Google Scholar 

  31. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. https://doi.org/10.1021/AC60131A045

    Article  Google Scholar 

  32. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6:183–195. https://doi.org/10.1002/POLC.5070060121

    Article  Google Scholar 

  33. Ye N, Li D, Chen L et al (2010) Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa. PLoS ONE 5:1–6. https://doi.org/10.1371/JOURNAL.PONE.0012641

    Article  Google Scholar 

  34. Qiu HW, Zhou QC, Geng J (2015) Pyrolytic and kinetic characteristics of Platycodon grandiflorum peel and its cellulose extract. Carbohydr Polym 117:644–649. https://doi.org/10.1016/J.CARBPOL.2014.09.034

    Article  Google Scholar 

  35. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/BCSJ.38.1881

    Article  Google Scholar 

  36. Agrawal A, Chakraborty S (2013) A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol 128:72–80. https://doi.org/10.1016/J.BIORTECH.2012.10.043

    Article  Google Scholar 

  37. Álvarez A, Pizarro C, García R et al (2016) Determination of kinetic parameters for biomass combustion. Bioresour Technol 216:36–43. https://doi.org/10.1016/J.BIORTECH.2016.05.039

    Article  Google Scholar 

  38. Dhyani V, Kumar J, Bhaskar T (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour Technol 245:1122–1129. https://doi.org/10.1016/J.BIORTECH.2017.08.189

    Article  Google Scholar 

  39. Cole AJ, Mata L, Paul NA, de Nys R (2014) Using CO2 to enhance carbon capture and biomass applications of freshwater macroalgae. GCB Bioenergy 6:637–645. https://doi.org/10.1111/GCBB.12097

    Article  Google Scholar 

  40. Blanco PH, Wu C, Onwudili JA, Williams PT (2013) Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel. Appl Catal B Environ 134–135:238–250. https://doi.org/10.1016/J.APCATB.2013.01.016

    Article  Google Scholar 

  41. Li D, Chen L, Yi X et al (2010) Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol 101:7131–7136. https://doi.org/10.1016/J.BIORTECH.2010.03.145

    Article  Google Scholar 

  42. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/J.FUEL.2006.12.013

    Article  Google Scholar 

  43. Anastasakis K, Ross AB, Jones JM (2011) Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel 90:598–607. https://doi.org/10.1016/J.FUEL.2010.09.023

    Article  Google Scholar 

  44. Ceylan S, Goldfarb JL (2015) Green tide to green fuels: TG–FTIR analysis and kinetic study of Ulva prolifera pyrolysis. Energy Convers Manag 101:263–270. https://doi.org/10.1016/J.ENCONMAN.2015.05.029

    Article  Google Scholar 

  45. Tumuluru JS, Hess JR, Boardman RD et al (2012) Formulation, pretreatment, and densification options to improve biomass specifications for Co-firing high percentages with coal. Ind Biotechnol 8:113–132. https://doi.org/10.1089/IND.2012.0004/ASSET/IMAGES/LARGE/FIGURE6.JPEG

    Article  Google Scholar 

  46. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  47. Haykiri-Acma H, Yaman S (2008) Thermal reactivity of rapeseed (Brassica napus L.) under different gas atmospheres. Bioresour Technol 99:237–242. https://doi.org/10.1016/J.BIORTECH.2007.01.001

    Article  Google Scholar 

  48. Munir S, Daood SS, Nimmo W et al (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418. https://doi.org/10.1016/J.BIORTECH.2008.07.065

    Article  Google Scholar 

  49. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504. https://doi.org/10.1016/J.BIORTECH.2007.11.036

    Article  Google Scholar 

  50. Kim SS, Ly HV, Kim J et al (2013) Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass. Bioresour Technol 139:242–248. https://doi.org/10.1016/J.BIORTECH.2013.03.192

    Article  Google Scholar 

  51. Ceylan S, Topcu Y, Ceylan Z (2014) Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Bioresour Technol 171:193–198. https://doi.org/10.1016/J.BIORTECH.2014.08.064

    Article  Google Scholar 

  52. Zhao H, Yan H, Liu M et al (2011) Pyrolytic characteristics and kinetics of the marine green tide macroalgae. Chin J Oceanol Limnol 29:996–1001. https://doi.org/10.1007/S00343-011-0095-6

    Article  Google Scholar 

  53. Shuping Z, Yulong W, Mingde Y et al (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. undefined 35:5406–5411. https://doi.org/10.1016/J.ENERGY.2010.07.013

    Article  Google Scholar 

  54. Ahmad MS, Klemeš JJ, Alhumade H et al (2021) Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis. TGA and kinetic modelling Fuel 293:120349. https://doi.org/10.1016/J.FUEL.2021.120349

    Article  Google Scholar 

  55. Sahoo A, Kumar S, Mohanty K (2021) Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer. Renew Energy 165:261–277. https://doi.org/10.1016/J.RENENE.2020.11.011

    Article  Google Scholar 

  56. Jain J, Jain S, Sinha S (2018) Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. J Elastomers Plast 51:224–243. https://doi.org/10.1177/0095244318783024

    Article  Google Scholar 

  57. Morais LC, Maia AAD, Guandique MEG, Rosa AH (2017) Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim 129:1813–1822. https://doi.org/10.1007/S10973-017-6329-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Suresh Kumar: data curation, software, methodology, writing—review and editing. M. Edwin: supervision, resources, software, conceptualization, writing—review and editing. A. Jemila Percy: writing—review and editing.

Corresponding author

Correspondence to M. Edwin.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.S., Edwin, M. & Percy, A.J. Comparative study on pyrolysis characteristics and kinetics of Indian almond fruit and Gracilaria changii seaweed by thermogravimetric analysis. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03662-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03662-z

Keywords

Navigation