Skip to main content

Advertisement

Log in

Development of peanut husk carbon quantum dots and ferrite foil epoxy composite for EMI shielding at high frequency bands

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, a thin-walled epoxy biocomposite electromagnetic interference (EMI) shielding material was prepared using peanut husk carbon quantum dots and ferrite foil. This work aims to investigate how the biomass turned carbon material improvises the shielding effectiveness of ferrite foil-epoxy composites in X and Ku bands. The composite laminates were prepared by a room temperature hand layup method and cured to room temperature. The results of the study reveal that 45 vol. % ferrite foil increases relative permeability and dielectric loss for composite designation up to 4.62 and 0.072. Similarly, the highest relative permittivity and dielectric loss of composite designation EFC3, when compared to pure epoxy, are 65% and 66%, respectively. The EFC1 offers high magnetization of 728 E-6 emu with 1 vol. % of carbon quantum dots. Similarly, the EFC3 offers a maximum microwave shielding for both E and J bands of about − 52.8 dB and − 54.7 dB, which contains 5 vol. % of carbon quantum dots. Moreover, adding 45 vol. % ferrite foil with 3 vol. % of carbon quantum dots improved the tensile and flexural strengths to 138.4 MPa and 18.2 MPa. Such EMI shielding composites could be used in microwave gadgets, radar, telecommunication devices and aerospace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data available in manuscript itself. No separate data.

References

  1. Prakash VR Arun, Viswanthan R (2019) “Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite Composites part A. Appl Sci Manuf 118:317–326

    Article  Google Scholar 

  2. Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106

    Article  Google Scholar 

  3. Alshahrani, Hassan, and Arun Prakash Vr (2022) “Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite.” Biomass Convers Biorefin 1–12

  4. Shan Liu et al (2021) Compos Part A Appl Sci Manuf 145. 106376, ISSN 1359–835X, https://doi.org/10.1016/j.compositesa.2021.106376.

  5. Pan J et al (2019) Mat Chem Phy 236:121777. https://doi.org/10.1016/j.matchemphys.2019.121777

    Article  Google Scholar 

  6. Deep N et al (2018) Karb Inter J Mod Sci 4:207–215. https://doi.org/10.1016/j.kijoms.2018.02.001

    Article  Google Scholar 

  7. Farshbaf et al (2017) Artif Cells Nanomed Biotechnol 46:1–18. https://doi.org/10.1080/21691401.2017.1377725

    Article  Google Scholar 

  8. El-Shamy et al (2020) Prog Org. Coat 146:105747. https://doi.org/10.1016/j.porgcoat.2020.105747

    Article  Google Scholar 

  9. Naim Al et al (2021) Prog Org Coat 161:106509. https://doi.org/10.1016/j.porgcoat.2021.106509.10.1016/j.chemosphere.2021.132313

    Article  Google Scholar 

  10. Wang, Zhe, et al (2022) Chemosphere287 132313. https://doi.org/10.1016/j.chemosphere.2021.132313

  11. Perumal, Suguna et al (2021) Journal of Environmental Chemical Engineering 9.4 105802. https://doi.org/10.1016/j.jece.2021.105802

  12. Yang Z, Li Z, Xu M et al (2013) Nano-Micro Lett 5:247–259. https://doi.org/10.1007/BF03353756

    Article  Google Scholar 

  13. Shiralgi et al (2017) Nano-Struct Nano-Objects 12:84–90. https://doi.org/10.1016/j.nanoso.2017.09.009

    Article  Google Scholar 

  14. Guna et al (2019) J Build Eng 27:100991. https://doi.org/10.1016/j.jobe.2019.100991

    Article  Google Scholar 

  15. Andy Aka et al (2020) Electrical Engineering Stack Exchange. https://electronics.stackexchange.com/q/524415

  16. Wang, Xiao et al (2019) Front Chem 7 671 https://doi.org/10.3389/fchem.2019.00671

  17. Arun et al (2016) Applied Physics A 122(10):875. https://doi.org/10.1007/s00339-016-0411-2

    Article  Google Scholar 

  18. Prakash et al (2018) SILICON 10:2279–2286. https://doi.org/10.1007/s12633-018-9762-y

    Article  Google Scholar 

  19. Ben et al (2021) SILICON 1703–1712:13. https://doi.org/10.1007/s12633-020-00569-0

    Article  Google Scholar 

  20. Arun et al (2018) Polym Bull 4207–4225:75. https://doi.org/10.1007/s00289-017-2262-1

    Article  Google Scholar 

  21. Prabhakar et al (2015) Fibers Polym 16:1119–1124. https://doi.org/10.1007/s12221-015-1119-1

    Article  Google Scholar 

  22. Arunprakash Vincent et al (2018) Colloids Interface Sci Commun 24: 89–92. ISSN 2215–0382, https://doi.org/10.1016/j.colcom.2018.04.007.

  23. Prabhu P et al (2022) Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite. Biomass Convers Biorefin 1–8

  24. Antony et al (2021) Trans Electr Electron Mater 794–802:22. https://doi.org/10.1007/s42341-021-00299-z

    Article  Google Scholar 

  25. Merizgui Tahar et al (2022) “Microwave shielding performance of TiO2/Co/GF containing high structure carbon fiber alternate laminate composite. J Mater Sci Materials in Electronics 33(2):934–949

    Article  Google Scholar 

  26. Pai et al (2022) Energies 15:3901. https://doi.org/10.3390/en15113901

    Article  Google Scholar 

  27. Alshahrani, Hassan, Arun Prakash VR (2022) “Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application.” Progress in Organic Coatings 172: 107080

  28. Zhang Y et al (2017) ACS Appl Mater Interfaces 9(1):809–818. https://doi.org/10.1021/acsami.6b11989

    Article  Google Scholar 

  29. Alshahrani, Hassan, Prakash VR (2022) “Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites.” Biomass Convers Biorefin: 1–9

  30. Vincent et al (2022) Biomass Conv Bioref 4009–4019:12. https://doi.org/10.1007/s13399-020-00831-w

    Article  Google Scholar 

  31. Merizgui et al (2020). Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00179-y

    Article  Google Scholar 

  32. Edoziuno FO et al (2021) Scientific African 12. ISSN 2468–2276, https://doi.org/10.1016/j.sciaf.2021.e00781.

  33. Alshahrani, Hassan et al (2022) Mechanical properties study on sandwich composites of glass fiber reinforced plastics (GFRP) using liquid thermoplastic resin, Elium®: preliminary experiments. Coatings 12.10: 1423

  34. Alshahrani, Hassan, Arun Prakash VR (2022) Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production. J Clean Prod: 133931

  35. Rajadurai A (2017) Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process. Defence Technology 13(1):40–46

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. Sivakumar, S. Suvitha, and S. K. Rajesh kanna: research activates and drafting. Muruganantham Ponnusamy: testing support and drafting.

Corresponding author

Correspondence to K. Sivakumar.

Ethics declarations

Ethical approval

NA.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, K., Suvitha S, kanna, S.K.R. et al. Development of peanut husk carbon quantum dots and ferrite foil epoxy composite for EMI shielding at high frequency bands. Biomass Conv. Bioref. 13, 5435–5443 (2023). https://doi.org/10.1007/s13399-022-03469-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03469-y

Keywords

Navigation