Skip to main content
Log in

Isolation and characterisation of hemicelluloses from oil palm empty fruit bunches

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A reliable hemicellulose extraction method from oil palm empty fruit bunches (OPEFB) is required for subsequent investigations into its composition and participation in pyrolysis and anaerobic digestion processes. Previous hemicellulose OPEFB research only looked at yield, purity and functional characteristics. In this study, OPEFB extractives were removed followed by hemicellulose A (HA) and B (HB) isolation and characterisation using Fourier-transform infrared, thermogravimetric and ultimate analysis. Energy dispersive X-ray spectroscopy (EDS) was deployed on the extractive-free OPEFB ash. Ethanol-toluene removed 8.2 ± 0.1 wt% extractives from OPEFB, with ethanol only removing another 1.6 ± 0.1 wt% while water extracted a further 5.4 ± 1.1 wt%. Alkaline extraction of OPEFB with 3 M KOH at 40 °C and subsequent centrifugation yielded 28.6 wt% HA, while 8.0 wt% HB was obtained as a precipitate from the supernatant of HA using 95% ethanol. The empirical formula of commercial xylan, a hemicellulose surrogate, and HA and HB were C5H9.5O4.4, C5H9.4O4.1 and C5H9.8O2.9, respectively. FTIR analysis suggests that xylose and arabinose were the main constituents of xylan, HA and HB. The ash content (AC) of HA and HB was ten times greater than xylan (2.7 wt%). EDS analysis suggests that the high AC of HA and HB is attributed to Ca, Mg and Si which could not be effectively removed during extractives removal. Thermogravimetry identified a common decomposition peak at 219 °C confirming the presence of hemicellulose in the isolated HA and HB. Further research is required to refine the extraction protocol to obtain purer OPEFB hemicellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li W et al (2018) Methane production through anaerobic digestion: participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl Energy 226(January):1219–1228. https://doi.org/10.1016/j.apenergy.2018.05.055

    Article  Google Scholar 

  2. Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16(3):1462–1476. https://doi.org/10.1016/j.rser.2011.11.035

    Article  Google Scholar 

  3. Rosli NS, Harun S, Jahim JM, Othaman R (2017) Chemical and physical characterization of oil palm empty fruit bunch. Malaysian J Anal Sci 21(1):188–196. https://doi.org/10.17576/mjas-2017-2101-22

    Article  Google Scholar 

  4. Khor KH, Lim KO, Zainal ZA (2009) Characterization of bio-oil: a by-product from slow pyrolysis of oil palm empty fruit bunches. Am J Appl Sci 6(9):1647–1652. https://doi.org/10.3844/ajassp.2009.1647.1652

    Article  Google Scholar 

  5. Chang SH (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy 62:174–181. https://doi.org/10.1016/j.biombioe.2014.01.002

    Article  Google Scholar 

  6. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845. https://doi.org/10.1038/nature07190

    Article  Google Scholar 

  7. Peng Y, Wu S (2010) The structural and thermal characteristics of wheat straw hemicellulose. J Anal Appl Pyrolysis 88(2):134–139. https://doi.org/10.1016/j.jaap.2010.03.006

    Article  Google Scholar 

  8. Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energ Technol 5(1):52–79. https://doi.org/10.1002/ente.201600327

    Article  Google Scholar 

  9. Saka S, Bae HJ (2016) Secondary xylem for bioconversion. In: Kim YS, Funada R, Singh AP (eds) Secondary Xylem Biology, Elsevier, pp 213–231. https://doi.org/10.1016/B978-0-12-802185-9.00011-5

  10. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12. https://doi.org/10.1016/j.biortech.2012.04.037

    Article  Google Scholar 

  11. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  12. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta J-M (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrolysis 107:323–331. https://doi.org/10.1016/j.jaap.2014.03.017

    Article  Google Scholar 

  13. Alias NB, Ibrahim N, Hamid MKA (2014) Pyrolysis of empty fruit bunch by thermogravimetric analysis. Energy Procedia 61:2532–2536. https://doi.org/10.1016/j.egypro.2014.12.039

    Article  Google Scholar 

  14. Wu H, Zhou Z, Yang Y, Meng Q (2020) Effect of steam explosion of oil palm frond and empty fruit bunch on nutrient composition and ruminal fermentation characteristics. Trop Anim Health Prod 52(3):1223–1228. https://doi.org/10.1007/s11250-019-02117-4

    Article  Google Scholar 

  15. Nasir MAM, Saleh SH (2016) Characterization of hemicelluloses from oil palm empty fruit bunches obtained by alkaline extraction and ethanol precipitation. Malaysian J Anal Sci 20(4):849–855. https://doi.org/10.17576/mjas-2016-2004-19

    Article  Google Scholar 

  16. Alriols MG, Tejado A, Blanco M, Mondragon I, Labidi J (2009) Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chem Eng J 148(1):106–114. https://doi.org/10.1016/j.cej.2008.08.008

    Article  Google Scholar 

  17. Omar WNNW, Amin NAS (2016) Multi response optimization of oil palm frond pretreatment by ozonolysis. Ind Crops Prod 85:389–402. https://doi.org/10.1016/j.indcrop.2016.01.027

    Article  Google Scholar 

  18. Ariffin H, Hassan MA, Kalsom MSU, Abdullah N, Shirai Y (2008) Effect of physical, chemical and thermal pretreatments on the enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB). J Trop Agric Food Sci 36(2):1. [Online]. Available: http://ejtafs.mardi.gov.my/jtafs/36-2/Oil palm empty fruit bunch.pdf

  19. Loow YL, Wu TY, Jahim JMd, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3):1491–1520. https://doi.org/10.1007/s10570-016-0936-8

    Article  Google Scholar 

  20. Hanim SS, Norsyabilah R, Suhaila MHN, Noraishah A, Kartina AKS (2012) Effects of temperature, time and pressure on the hemicelluloses yield extracted using subcritical water extraction. Procedia Eng 42:562–565. https://doi.org/10.1016/j.proeng.2012.07.448

    Article  Google Scholar 

  21. Cantero DA, Martínez C, Bermejo MD, Cocero MJ (2015) Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis. Green Chem 17(1):610–618. https://doi.org/10.1039/c4gc01359j

    Article  Google Scholar 

  22. Anis M, Nadrah AHS, Kamarudin H, Astimar AA, Basri WM (2011) Isolation and functional properties of hemicelluloses from oil palm trunks. J Oil Palm Res 23(3):1178–1184. http://jopr.mpob.gov.my/isolation-and-functional-properties-of-hemicelluloses-from-oil-palm-trunks/

  23. Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combust Sci Technol 126(1–6):97–137. https://doi.org/10.1080/00102209708935670

    Article  Google Scholar 

  24. American Society for Testing and Materials (2013) Standard test method for preparation of extractive-free wood (ASTM D1105-96). https://doi.org/10.1520/D1105-96R13

  25. American Society for Testing and Materials (2001) Standard test method for acid-insoluble lignin in wood (ASTM D1106-96). https://doi.org/10.1520/C1366-04R09.2

  26. Popescu C-M, Singurel G, Popescu M-C, Vasile C, Argyropoulos DS, Willför S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77(4):851–857. https://doi.org/10.1016/j.carbpol.2009.03.011

    Article  Google Scholar 

  27. Mayoral MC, Izquierdo MT, Andrés JM, Rubio B (2001) Different approaches to proximate analysis by thermogravimetry analysis. Thermochim Acta 370(1–2):91–97. https://doi.org/10.1016/S0040-6031(00)00789-9

    Article  Google Scholar 

  28. American Society for Testing and Materials (2001) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon (ASTM D5373-21). https://doi.org/10.1520/D5373-21

  29. Zuorro A, Iannone A, Lavecchia R (2019) Water–organic solvent extraction of phenolic antioxidants from brewers’ spent grain. Processes 7(3):126. https://doi.org/10.3390/pr7030126

    Article  Google Scholar 

  30. Hassan O et al (2013) Optimization of pretreatments for the hydrolysis of oil palm empty fruit bunch fiber (EFBF) using enzyme mixtures. Biomass Bioenergy 56:137–146. https://doi.org/10.1016/j.biombioe.2013.04.021

    Article  Google Scholar 

  31. Oelberg K (1956) Factors affecting the nutritive value of range forage. J Range Manag 9(5):220. https://doi.org/10.2307/3894056

    Article  Google Scholar 

  32. Celebioglu HY, Cekmecelioglu D, Dervisoglu M, Kahyaoglu T (2012) Effect of extraction conditions on hemicellulose yields and optimisation for industrial processes. Int J Food Sci Technol 47(12):2597–2605. https://doi.org/10.1111/j.1365-2621.2012.03139.x

    Article  Google Scholar 

  33. Sun RC, Tomkinson J (2002) Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr Polym 50(3):263–271. https://doi.org/10.1016/S0144-8617(02)00037-1

    Article  Google Scholar 

  34. Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56(2):195–204. https://doi.org/10.1016/j.carbpol.2004.02.002

    Article  Google Scholar 

  35. Adapa PK, Schonenau LG, Canam T, Dumonceaux T (2011) Quantitative analysis of lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw using Fourier transform infrared spectroscopy. J Agric Sci Technol 1:177–188 [Online]. Available: https://works.bepress.com/thomas_canam/2/

  36. Isroi et al (2012) Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules 17(12):14995–15012. https://doi.org/10.3390/molecules171214995

    Article  Google Scholar 

  37. Peng W, Wang L, Ohkoshi M, Zhang M (2015) Separation of hemicelluloses from eucalyptus species: investigating the residue after alkaline treatment. Cellul Chem Technol 49(9–10):757–764 [Online]. Available: https://www.cellulosechemtechnol.ro/pdf/CCT9-10(2015)/p.757-764.pdf

  38. Peng F, Ren JL, Xu F, Bian J, Peng P, Sun R-C (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57(14):6305–6317. https://doi.org/10.1021/jf900986b

    Article  Google Scholar 

  39. Li X, Wei Y, Xu J, Xu N, He Y (2018) Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on ftir macro- and micro-spectroscopy coupled with chemometrics. Biotechnol Biofuels 11(1):1–16. https://doi.org/10.1186/s13068-018-1251-4

    Article  Google Scholar 

  40. Ngadi N, Lani NS (2014) Extraction and characterization of cellulose from empty fruit bunch (EFB) fiber. J Teknol 68(5):35–39. https://doi.org/10.11113/jt.v68.3028

    Article  Google Scholar 

  41. Flórez-Pardo LM, González-Córdoba A, López-Galan JE (2018) Evaluation of different methods for efficient extraction of hemicelluloses leaves and tops of sugarcane. Dyna (Medellin) 85(204):18–27. https://doi.org/10.15446/dyna.v85n204.66626

    Article  Google Scholar 

  42. Peng F, Bian J, Ren J-L, Peng P, Xu F, Sun R-C (2012) Fractionation and characterization of alkali-extracted hemicelluloses from peashrub. Biomass Bioenergy 39:20–30. https://doi.org/10.1016/j.biombioe.2010.08.034

    Article  Google Scholar 

  43. Rowley J, Decker SR, Michener W, Black S (2013) Efficient extraction of xylan from delignified corn stover using dimethyl sulfoxide. 3 Biotech 3(5):433–438. https://doi.org/10.1007/s13205-013-0159-8

    Article  Google Scholar 

  44. Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61(11):1168–1177. https://doi.org/10.1366/000370207782597076

    Article  Google Scholar 

  45. Werner K, Pommer L, Broström M (2014) Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis 110(1):130–137. https://doi.org/10.1016/j.jaap.2014.08.013

    Article  Google Scholar 

  46. Tchapda A, Pisupati S (2014) A review of thermal co-conversion of coal and biomass/waste. Energies (Basel) 7(3):1098–1148. https://doi.org/10.3390/en7031098

    Article  Google Scholar 

  47. Haddad K et al (2017) Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis. Energy 134:10–23. https://doi.org/10.1016/j.energy.2017.06.022

    Article  Google Scholar 

  48. Giudicianni P et al (2021) Inherent metal elements in biomass pyrolysis: a review. Energy Fuels 35(7):5407–5478. https://doi.org/10.1021/acs.energyfuels.0c04046

    Article  Google Scholar 

  49. Nudri NA, Bachmann RT, Ghani WAWAK, Sum DNK, Azni AA (2020) Characterization of oil palm trunk biocoal and its suitability for solid fuel applications. Biomass Convers Biorefin 10(1):45–55. https://doi.org/10.1007/s13399-019-00419-z

    Article  Google Scholar 

  50. Jiang L et al (2013) Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour Technol 146:254–260. https://doi.org/10.1016/j.biortech.2013.07.063

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2018/STG05/UNIKL/02/2) of the Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Musa Idris Tanimu: methodology, investigation, formal analysis, resources and writing original draft; Muhammad Asnawi bin Abdul Halid: investigation, formal analysis and resources; Soh Kheang Loh: investigation, resources, validation, data curation, writing review and editing, supervision and funding acquisition; Robert Thomas Bachmann: conceptualisation, methodology, software, validation, resources, data curation, writing review and editing, supervision, project administration and funding acquisition.

Corresponding author

Correspondence to Robert Thomas Bachmann.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanimu, M.I., Halid, M.A.b.A., Loh, S.K. et al. Isolation and characterisation of hemicelluloses from oil palm empty fruit bunches. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03456-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03456-3

Keywords

Navigation