Skip to main content
Log in

Thermogravimetric analysis of lignocellulosic leaf-based fiber-reinforced thermosets polymer composites: an overview

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In many industrial applications, the thermal performance of natural fiber-reinforced polymer composites attracts much technical and scientific attention. Compared to produced natural fiber polymer composites (NFPCs), the thermal behavior of natural fiber composites is often the most researched subject. Thermal properties may be important in instances involving temperatures exceeding the thermal conductivity, thermal stability, curing, and processes used in heating procedures. Several studies have determined their unique thermal properties, notably thermogravimetric analysis (TGA) of natural fiber-reinforced polymer composites. This review examines the effect of temperature on mass loss in natural leaf fibers collected from a variety of plants. Furthermore, natural fiber-reinforced polymer composites are used in a wide range of technological applications, but their diversity is limited due to temperature changes during cooling or heating, necessitating a thermogravimetric analysis before usage in a specific application. TGA was a fundamental thermal analytical approach that was easy, ideal, stable, sensitive, and superb. The thermal analysis also provides important information on glass transition temperatures, thermal expansion, softening points, composition changes, and phase shifts on materials of varied shapes when exposed to a constant load as a function of temperature. This focuses on the fundamentals and experimental thermal analysis of natural leaf fiber–reinforced thermoset polymer composites with or without chemical treatment of fiber for both research and technical applications and their use in various engineering fields, from vehicle manufacturing to civil construction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The associated data with this study is available in the manuscript.

References

  1. Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Mater Sci Eng A 557:17–28

    Article  Google Scholar 

  2. Monteiro SN, Lopes FPD, Barbosa AP, Bevitori AB, Da Silva ILA, Da Costa LL (2011) Natural lignocellulosic fibers as engineering materials—an overview. Metall Mater Trans A 42(10):2963–2974

    Article  Google Scholar 

  3. Iyengar EV (2007) An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do About It. Am Biol Teach 69(1):58

    Article  Google Scholar 

  4. Kumar S, Prasad L, Patel VK, Kumar V, Kumar A, Yadav A, Winczek J (2021) Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites. Polymers 13(9):1369

    Article  Google Scholar 

  5. Prasad L, Singh G, Yadav A, Kumar V, Kumar A (2019) Properties of functionally gradient composites reinforced with waste natural fillers. Acta Periodica Technologica 50:250–259

    Article  Google Scholar 

  6. Prasad L, Bairwan R, Yadav A, Kumar A, Kumar V, Winczek J (2022) Evaluation of physical, mechanical, and wear properties of jatropha shell powder reinforced epoxy glass fiber composites. J Nat Fibers 1–13

  7. Negi RS, Prasad L, Yadav A, Winczek J (2022) Physical and mechanical properties of pinecone scale fiber/vigna mungo powder reinforced polypropylene based hybrid composites. J Nat Fibers 1–11

  8. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35(3):371–376

    Article  Google Scholar 

  9. Kamath G, Mishra B, Tiwari S, Bhardwaj A, Marar SS, Soni S, Anjappa SB (2022) Experimental and Statistical Evaluation of Drilling Induced Damages in Glass Fiber Reinforced Polymer Composites-Taguchi Integrated Supervised Machine Learning Approach. Eng Sci 19:312–318

    Google Scholar 

  10. Mohan N, Kalam SA, Mahaveerakannan R, Shah M, Yadav JS, Sharma V, Narasimha DB (2022) Statistical evaluation of machining parameters in drilling of glass laminate aluminum reinforced epoxy composites using machine learning model. Eng Sci 20. https://doi.org/10.30919/es8e716

  11. Naik N, Shivamurthy B, Thimmappa BHS, Gupta A, Guo JZ, Seok I (2022) A review on processing methods and characterization techniques of green composites. Eng Sci 20

  12. Kowshik S, Sharma S, Shettar M, Hiremath P, Upadhyaya A (2022) Investigation on the Effects of Uncarbonised, Carbonised and Hybrid Eggshell Filler Addition on the Mechanical Properties of Glass Fibre/Polyester Composites. Eng Sci 18:121–131

    Google Scholar 

  13. Stephen C, Shivamurthy B, Mohan M, Mourad AHI, Selvam R, Thimmappa BHS (2022) Low Velocity Impact Behavior of Fabric Reinforced Polymer Composites–A Review. Eng Sci 18:75–97

    Google Scholar 

  14. Naik V, Kumar M (2021) A review on natural fiber composite material in automotive applications. Eng Sci 18:1–10

    Google Scholar 

  15. Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Guo Z (2021) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng Sci 18:59–74

    Google Scholar 

  16. Shahabaz SM, Sharma S, Shetty N, Shetty SD, Gowrishankar MC (2021) Influence of temperature on mechanical properties and machining of fibre reinforced polymer composites: a review. Eng Sci 16:26–46

    Google Scholar 

  17. de Macedo Neto JC, do Nascimento NR, Bello RH, de Verçosa LA, Neto JE, da Costa JCM, Rol F (2021) Kaolinite review: intercalation and production of polymer nanocomposites. Eng Sci 17:28–44

    Google Scholar 

  18. Li G, Wang L, Lei X, Peng Z, Wan T, Maganti S, Wei H (2022) Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5(2):853–863

    Article  Google Scholar 

  19. Cao Y, Weng M, Mahmoud MHH, Elnaggar AY, Zhang L, El Azab IH, Sheng X (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5(2):1253–1267

    Article  Google Scholar 

  20. Prasad L, Kumain A, Patel RV, Yadav A, Winczek J (2020) Physical and mechanical behavior of hemp and nettle fiber-reinforced polyester resin-based hybrid composites. J Nat Fibers 1–16

  21. Prasad L, Singh V, Patel RV, Yadav A, Kumar V, Winczek J (2021) Physical and mechanical properties of Ramban’s (Agave) fiber reinforced with polyester composite materials. J Nat Fibers 1–15

  22. Prasad L, Kumar S, Patel RV, Yadav A, Kumar V, Winczek J (2020) Physical and Mechanical Behaviour of Sugarcane Bagasse Fibre-Reinforced Epoxy Bio-Composites. Materials 13(23):5387

    Article  Google Scholar 

  23. Kumar S, Prasad L, Kumar S, Patel VK (2020) Physico-mechanical and Taguchi optimized abrasive wear behavior of KOH/KMnO4/NaHCO3 treated Himalayan Agave fiber reinforced polyester composite. Mater Res Express 6(12):125353

    Article  Google Scholar 

  24. Kumar S, Prasad L, Patel VK, Kumain A, Yadav A (2021) Experimental and numerical study on physicomechanical properties and Taguchi’s designed abrasive wear behavior of hemp/nettle-polyester hybrid composite. Polym Compos 42(12):6912–6927

    Article  Google Scholar 

  25. Kumar S, Prasad L, Patel VK, Kumar V, Kumar A, Yadav A (2021) Physico-mechanical properties and Taguchi optimized abrasive wear of alkali treated and fly ash reinforced himalayan agave fiber polyester composite J Nat Fibers 1–14

  26. Kumar S, Bhatt G, Kant R, and Patel VK (2022) Extraction, fabrication, and mechanical aspects in composites of bamboo fiber. Trends in Fabrication of Polymers and Polymer Composites, AIP Publishing Books, pp 6-1–6-22

  27. Wang Y, Xu H, Wu M, Yu DG (2021) Nanofibers-based food packaging. ES Food Agrofor 7:1–24

    Google Scholar 

  28. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Guo Z (2021) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng Sci 17:113–120

    Google Scholar 

  29. Arun A, Malrautu P, Laha A, Ramakrishna S (2021) Gelatin nanofibers in drug delivery systems and tissue engineering. Eng Sci 16:71–81

    Google Scholar 

  30. Jing X, Wei J, Liu Y, Song B, Liu Y (2020) Deployment analysis of aramid fiber reinforced shape-memory epoxy resin composites. Eng Sci 11:44–53

  31. Prasad RD, Sahoo AK, Shrivastav OP, Charmode N, Kamat R, Kajave NG, Prasad NR (2022) A Review on Aspects of Nanotechnology in Food Science and Animal Nutrition. ES Food Agrofor 8:12–46

    Google Scholar 

  32. Kashyap K, Hait M, Roymahapatra G, Vaishnav MM (2022) Proximate and elemental analysis of Careya arborea Roxb plant’s root. ES Food Agrofor 7:41–47

    Google Scholar 

  33. Vinod B, Suresh S, Sudhakara D (2020) Investigation of biodegradable hybrid composites: effect of fibers on tribo-mechanical characteristics. Adv Compos Hybrid Mater 3(2):194–204

    Article  Google Scholar 

  34. More AP (2022) Flax fiber–based polymer composites: a review. Adv Compos Hybrid Mater 5:1–20

  35. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. Jom 58(11):80–86

    Article  Google Scholar 

  36. Kumar S, Prasad L, Kumar S, Patel VK (2019) Physico-mechanical and Taguchi-designed sliding wear properties of Himalayan agave fiber reinforced polyester composite. J Market Res 8(4):3662–3671

    Google Scholar 

  37. Alves C, Silva AJ, Reis LG, Freitas M, Rodrigues LB, Alves DE (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18(4):313–327

    Article  Google Scholar 

  38. Kumar S, Verma RK, Kumar A, Patel VK (2022) Importance of chemically treated natural fibers in the fabrication of natural fiber reinforced polymer composites. In Trends in Fabrication of Polymers and Polymer Composites, AIP Publishing Books, pp 10–1–10–22

  39. Monteiro SN, Lopes FPD, Ferreira AS, Nascimento DCO (2009) Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly. Jom 61(1):17–22

    Article  Google Scholar 

  40. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber-reinforced composites. Polym Rev 52(3):259–320

    Article  Google Scholar 

  41. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber-reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  Google Scholar 

  42. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol: J Polym Process Ins 18(4):351–363

    Article  Google Scholar 

  43. Manimaran P, Senthamaraikannan P, Murugananthan K, Sanjay MR (2018) Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. J Nat Fibers 15(1):29–38

    Article  Google Scholar 

  44. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98

    Article  Google Scholar 

  45. Izani MN, Paridah MT, Anwar UMK, Nor MM, H’ng PS (2013) Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos B Eng 45(1):1251–1257

    Article  Google Scholar 

  46. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: An overview. Cogent Eng 5(1):1446667

    Article  Google Scholar 

  47. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442

    Article  Google Scholar 

  48. Du P, Lin C, Wang R, He X, Zhang R, He Z, Lei M (2022) Mechanochemical synthesis of platinum nanoclusters supported cordierite for enhanced catalytic oxidation of toluene. Engineered Science 19:215–224

  49. Kakade AB, Kulkarni SB (2021) Electrical Conductivity and Modulus Studies of x [CNFO]-(1–x)[0.5 BCT-0.5 BZT] Multiferroic with Dielectric Magnetic and Magneto-dielectric Properties. Eng Sci 18:168–176

    Google Scholar 

  50. Maddodi BS, Lathashri UA, Devesh S, Rao AU, Shenoy GB, Wijerathne HT, Sooriyaperkasam N (2022) Repurposing Plastic Wastes in Non-conventional Engineered Wood Building Bricks for Constructional Application–A Mechanical Characterization. Eng Sci 18:329–336

    Google Scholar 

  51. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-micro Letters 14:128

  52. Mohanavel V, Raja T, Yadav A, Ravichandran M Winczek J (2021) Evaluation of mechanical and thermal properties of jute and ramie reinforced epoxy-based hybrid composites. J Nat Fibers 1–11

  53. Nguyen T, Zavarin E, Barrall EM (1981) Thermal analysis of lignocellulosic materials: Part I Unmodified materials. J Macromol Sci Part C 20(1):1–65

    Article  Google Scholar 

  54. Nguyen T, Zavarin E, Barrall EM (1981) Thermal analysis of lignocellulosic materials: Part II Modified materials. J Macromol Sci Part C 21(1):1–60

    Article  Google Scholar 

  55. Takase S, Shiraishi N (1989) Studies on composites from wood and polypropylenes II. J Appl Polym Sci 37(3):645–659

    Article  Google Scholar 

  56. Satyanarayana KG, Guimarães JL, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties, and applications. Compos A: Appl Sci Manuf38(7):1694–1709

  57. Cheng Y, Zhang G (2022) Impact of Atomic Coating on Thermal Conductivity of Nano Materials. ES Energy Environ 17:1–10

    Google Scholar 

  58. Weng M, Liu S, Su J, Xu W, Huang J, Tan W, Min Y (2022) Hydrophobic and Antimicrobial Polyimide based Composite Phase Change Materials with Thermal Energy Storage Capacity, Applied as Multifunctional Construction Material. Eng Sci 19:301–311

    Google Scholar 

  59. Zhang T, Xu J, Luo T (2020) Extremely High Thermal Conductivity of Aligned Polyacetylene Predicted using First-Principles-Informed United-Atom Force Field. arXiv preprint arXiv:2009.13708

  60. Prabhu N, Kumar K, Bhat R, Patil V, Kowshik S, Swain U, Agarwal A (2022) Thermal Necrosis Assisted Dental Implant Removal: A 3-Dimensional Finite Element Analysis. Eng Sci 19:225–235

    Google Scholar 

  61. Kan A, Zhu W, Wu Y (2022) Evaluation on Human Thermal Comfort in the Cabin Environment of Shanghai Passenger Ship. ES Energy Environ 17:74–85

    Google Scholar 

  62. Chang Z, Yuan K, Li J, Sun Z, Zheng J, Al-Fahdi M, Tang D (2022) Anomalous thermal conductivity induced by high dispersive optical phonons in rubidium and cesium halides. ES Energy Environ 16:30–39. https://doi.org/10.30919/esee8c653

  63. Pan D, Dong J, Yang G, Su F, Chang B, Liu C, Guo Z (2022) Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater 5(1):58–70

    Article  Google Scholar 

  64. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose-based fibers. Prog Polym Sci 24(2):221–274

    Article  Google Scholar 

  65. Di Blasi C, Galgano A, Branca C, Clemente M (2016) Analysis of the interactions between moisture evaporation and exothermic pyrolysis of Hazelnut Shells. Energy Fuels 30(10):7878–7886

    Article  Google Scholar 

  66. Mészáros E, Jakab E, Várhegyi G (2007) TG/MS, Py-GC/MS, and THM-GC/MS study the composition and thermal behavior of extractive components of Robinia pseudoacacia. J Anal Appl Pyrol 79(1–2):61–70

    Article  Google Scholar 

  67. Asim M, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M, Siakeng R (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J 29(7):625–648

    Article  Google Scholar 

  68. Vigneshwaran S, Sundarakannan R, John KM, Johnson RDJ, Prasath KA, Ajith S, Uthayakumar M (2020) Recent advancement in the natural fiber polymer composites: A comprehensive review. J Clean Prod 277:124109

    Article  Google Scholar 

  69. Song M, Wang J, Yuan L, Luan C, Zhou Z (2022) Investigation on crack recovery behavior of engineered cementitious composite (ECC) incorporated memory alloy fiber at low temperature. ES Mater Manuf 17:23–33

  70. Ruchi N, Bamne J, Singh N, Sharma PK, Singh P, Umar A, Haque FZ (2022) Synthesis of titania/silica nanocomposite for enhanced photodegradation of methylene blue and methyl orange dyes under uv and mercury lights. ES Mater Manuf 16:78–88

    Google Scholar 

  71. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Tensile behavior of New Zealand flax (Phormium Tenax) fibers. J Reinf Plast Compos 29(23):3450–3454

    Article  Google Scholar 

  72. Yeole P, Vaidya U (2021) Hybrid fiber metal composite laminate interlaminar reinforcement through metal interlocks. Adv Compos Hybrid Mater 4(1):186–194

    Article  Google Scholar 

  73. Yang H, Ng BC, Yu HC, Liang HH, Kwok CC, Lai FW (2022) Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet. Adv Compos Hybrid Mater 5(1):83–90

    Article  Google Scholar 

  74. Kini AK, Shenoy S (2022) Effect of natural fibre-epoxy plies on the mechanical and shock wave impact response of fibre metal laminates. Eng Sci 19:292–300

    Google Scholar 

  75. Hiremath A, Thipperudrappa S, Bhat R (2022) Surface Morphology Analysis using Atomic Force Microscopy and Statistical Method for Glass Fiber Reinforced Epoxy-Zinc Oxide Nanocomposites. Eng Sci 18:308–319

    Google Scholar 

  76. Zhang Y, Zhan L (2020) Preparation and damping properties of Al2O3 hollow spheres/epoxy composites encapsulating Q195 steel pipes. ES Mater Manuf 10(2):60–66

    Google Scholar 

  77. Paluvai NR, Mohanty S, Nayak SK (2017) Unsaturated polyester-toughened epoxy composites: Effect of sisal fiber on thermal and dynamic mechanical properties. J Vinyl Add Tech 23(3):188–199

    Article  Google Scholar 

  78. Venkatram B, Kailasanathan C, Seenikannan P, Paramasamy S (2016) Study on the evaluation of mechanical and thermal properties of natural sisal fiber/general polymer composites reinforced with nano clay. Int J Polym Anal Charact 21(7):647–656

    Article  Google Scholar 

  79. Gowthami A, Ramanaiah K, Prasad AR, Reddy KHC, Rao KM, Babu GS (2013) Effect of silica on thermal and mechanical properties of sisal fiber reinforced polyester composites. J Mater Environ Sci 4:199–204

    Google Scholar 

  80. Teja MS, Ramana MV, Sriramulu D, Rao CJ (2016) Experimental investigation of mechanical and thermal properties of sisal fiber-reinforced composite and effect of sic filler material. In IOP Conf Ser: Mater Sci Eng, 149, 012095. IOP Publishing

  81. Mbeche SM, Omara T (2020) Effects of alkali treatment on the mechanical and thermal properties of sisal/cattail polyester commingled composites. Peer J Mater Sci 2:e5

  82. Ganan P, Garbizu S, Llano-Ponte R, Mondragon I (2005) Surface modification of sisal fibers: effects on the mechanical and thermal properties of their epoxy composites. Polym Compos 26(2):121–127

    Article  Google Scholar 

  83. Verma A, Gaur A, Singh VK (2017) Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Mater Perform Charact 6(1):500–520

    Google Scholar 

  84. Agrawal R, Saxena NS, Sreekala MS, Thomas S (2000) Effect of treatment on the thermal conductivity and thermal diffusivity of oil-palm-fiber-reinforced phenol formaldehyde composites. J Polym Sci Part B: Polym Phys 38(7):916–921

    Article  Google Scholar 

  85. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fiber composites: An overview. Compos B Eng 101:31–45

    Article  Google Scholar 

  86. Luamkanchanaphan T, Chotikaprakhan S, Jarusombati S (2012) A study of physical, mechanical, and thermal properties for thermal insulation from narrow-leaved cattail fibers. APCBEE Proc 1:46–52

    Article  Google Scholar 

  87. Colbers B, Cornelis S, Geraets E, Gutiérrez-Valdés N, Tran LM, Moreno-Giménez E, Ramírez-Gaona M (2017) A feasibility study on the usage of cattail (Typha spp.) for the production of insulation materials and bio-adhesives (Vol. 71). Wageningen, Netherlands: Wageningen University and Research Centre

  88. Ramanaiah K, Ratna Prasad AV, Chandra Reddy KH (2011) Mechanical properties and thermal conductivity of Typha angustifolia natural fiber–reinforced polyester composites. Int J Polym Anal Charact 16(7):496–503

    Article  Google Scholar 

  89. Dieye Y, Sambou V, Faye M, Thiam A, Adj M, Azilinon D (2017) Thermo-mechanical characterization of building material based on Typha Australis. J Build Eng 9:142–146

    Article  Google Scholar 

  90. De Souza NCR, d’Almeida JRM (2014) Tensile, thermal, morphological, and structural characteristics of abaca (Musa textiles) fibers. Polym Renewable Resour 5(2):47–60

    Google Scholar 

  91. Saragih SW, Wirjosentono B, Meliana Y (2020) Influence of crosslinking agent on the morphology, chemical, crystallinity, and thermal properties of cellulose nanofiber using steam explosion. Case Stud Therm Eng 22:100740

    Article  Google Scholar 

  92. Malenab RAJ, Ngo JPS, Promentilla MAB (2017) Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials 10(6):579

    Article  Google Scholar 

  93. Ahmed SN, Prabhakar MN, Song JI (2018) Influence of silane-modified Vinyl ester on the properties of Abaca fiber-reinforced composites. Adv Polym Technol 37(6):1970–1978

    Article  Google Scholar 

  94. Li Z, Shah AR, Prabhakar MN, Song JI (2017) Effect of inorganic fillers and ammonium polyphosphate on the flammability, thermal stability, and mechanical properties of abaca-fabric/vinyl ester composites. Fibers Polym 18(3):555–562

    Article  Google Scholar 

  95. Saragih SW, Wirjosentono B, Meliana Y (2020) Thermal and Morphological Properties of Cellulose Nanofiber from Pseudo-Stem Fiber of Abaca (Musa Textilis). In Macromol Symp 391(1):2000020

    Article  Google Scholar 

  96. Liu K, Zhang X, Takagi H, Yang Z, Wang D (2014) Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Compos A Appl Sci Manuf 66:227–236

    Article  Google Scholar 

  97. Liu K, Yang Z, Takagi H (2014) Anisotropic thermal conductivity of unidirectional natural abaca fiber composites as a function of lumen and cell wall structure. Compos Struct 108:987–991

    Article  Google Scholar 

  98. Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Compos A Appl Sci Manuf 43(8):1234–1241

    Article  Google Scholar 

  99. Takagi H, Liu K, Osugi R, Nakagaito AN, Yang Z (2012) Heat barrier properties of green composites. J Biobased Mater Bioenergy 6(4):470–474

    Article  Google Scholar 

  100. Subramanya R, Satyanarayana KG, Shetty Pilar B (2017) Evaluation of structural, tensile, and thermal properties of banana fibers. J Nat Fibers 14(4):485–497

    Google Scholar 

  101. Parre A, Karthikeyan B, Balaji A, Udhayasankar R (2020) Investigation of chemical, thermal and morphological properties of untreated and NaOH-treated banana fiber. Mater Today Proc 22:347–352

    Article  Google Scholar 

  102. Mohan TP, Kanny K (2016) Nanoclay infused banana fiber and its effects on mechanical and thermal properties of composites. J Compos Mater 50(9):1261–1276

    Article  Google Scholar 

  103. Mohan TP, Kanny K (2017) Mechanical and thermal properties of nano clay-treated banana fibers. J Nat Fibers 14(5):718–726

    Article  Google Scholar 

  104. Balaji A, Purushothaman R, Udhayasankar R, Vijayaraj S, Karthikeyan B (2020) Study on mechanical, thermal, and morphological properties of banana fiber-reinforced epoxy composites. J Bio- Tribo-Corros 6(2):1–10

    Article  Google Scholar 

  105. Ronald Aseer J, Sankaranarayanasamy K, Jayabalan P, Natarajan R, Priya Dasan K (2013) Morphological, physical, and thermal properties of chemically treated banana fiber. J Nat Fibers 10(4):365–380

    Article  Google Scholar 

  106. Pothan LA, George CN, Jacob M, Thomas S (2007) Effect of chemical modification on the mechanical and electrical properties of banana fiber polyester composites. J Compos Mater 41(19):2371–2386

    Article  Google Scholar 

  107. Joseph S, Thomas S (2008) Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 109(1):256–263

    Article  Google Scholar 

  108. Bashir M, Qayoum A, Saleem SS (2019) Influence of lignocellulosic banana fiber on the thermal stability of brake pad material. Mater Res Express 6(11):115551

    Article  Google Scholar 

  109. Santosha PCR, Gowda ASSS, Manikanth V (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Mater Today Proc 5(2):5631–5635

    Article  Google Scholar 

  110. Sivaranjana P, Arumugaprabu V (2021) A brief review on mechanical and thermal properties of banana fiber-based hybrid composites. SN Appl Sci 3(2):1–8

    Article  Google Scholar 

  111. Mercy JL, Parmar DS, Srivastava S (2020) Tribological and thermogravimetric analysis of pineapple fiber reinforced epoxy composite. In IOP Conf Ser: Mater Sci Eng, 923,012024. IOP Publishing

  112. Jain J, Jain S, Sinha S (2019) Characterization and thermal kinetic analysis of pineapple leaf fibers and their reinforcement in epoxy. J Elastomers Plast 51(3):224–243

    Article  Google Scholar 

  113. Saha A, Kumar S, Kumar A (2021) Influence of pineapple leaf particulate on mechanical, thermal, and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite. J Polym Res 28(2):1–23

    Article  Google Scholar 

  114. Mittal M, Chaudhary R (2018) Effect of fiber content on thermal behavior and viscoelastic properties of PALF/Epoxy and COIR/Epoxy composites. Mater Res Express 5(12):125305

    Article  Google Scholar 

  115. Mahadevaswamy HS, Suresha B (2020) Role of nano-CaCO3 on mechanical and thermal characteristics of pineapple fiber reinforced epoxy composites. Mater Today Proc 22:572–579

    Article  Google Scholar 

  116. Yang G, Heo YJ, Park SJ (2019) Effect of the morphology of calcium carbonate on toughness behavior and thermal stability of epoxy-based composites. Processes 7(4):178

    Article  Google Scholar 

  117. Mittal M, Chaudhary R (2019) Experimental investigation on the thermal behavior of untreated and alkali-treated pineapple leaf and coconut husk fibers. Int J Appl Sci Eng 7(1):1–16

  118. Sakuri S, Sugiarto T, Sugiantoro B (2021) The effect of alkali and fumigation treatments on king pineapple fiber properties and interfacial bonding of king pineapple fiber/unsaturated polyester on microcrystalline cellulose reinforced composite. J Southwest Jiaotong Univ 56(3)

  119. Mohamed AR, Sapuan SM, Khalina A (2014) Mechanical and thermal properties of Josephine pineapple leaf fiber (PALF) and PALF-reinforced vinyl ester composites. Fibers Polym 15(5):1035–1041

    Article  Google Scholar 

  120. Hanafee ZM, Khalina A, Norkhairunnisa M, Syams ZE, Ern LK (2019) The effect of different linear robot travel speeds on the mass flow rate of pineapple leaf fiber (PALF) automated spray-up of the composite. Compos B Eng 156:220–228

    Article  Google Scholar 

  121. Asim M, Paridah MT, Saba N, Jawaid M, Alothman OY, Nasir M, Almutairi Z (2018) Thermal, physical properties, and flammability of silane treated kenaf/pineapple leaf fibers phenolic hybrid composites. Compos Struct 202:1330–1338

    Article  Google Scholar 

  122. Jain J, Sinha S (2021) Pineapple leaf fiber polymer composites as a promising tool for sustainable, eco-friendly composite material. J Nat Fibers 1–22

  123. Attharangsan S, Saikrasun S (2013) Kinetic analysis of thermal and thermo-oxidative decomposition of recycled PE/PALF bio-based composites. Int J Plast Technol 17(1):94–110

    Article  Google Scholar 

  124. Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on the performance of pineapple leaf fiber–polycarbonate composites. Compos B Eng 40(7):628–632

    Article  Google Scholar 

  125. Siakeng R, Jawaid M, Tahir PM, Siengchin S, Asim M (2020) Improving the properties of pineapple leaf fibers by chemical treatments. In: Pineapple leaf fibers. Springer, Singapore, pp 55–71

  126. Neto ARS, Araujo MA, Barboza RM, Fonseca AS, Tonoli GH, Souza FV, Marconcini JM (2015) Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Ind Crops Prod 64:68–78

    Article  Google Scholar 

  127. Rodríguez Soto AA, Valín Rivera JL, Alves Borges LMS, Palomares Ruiz JE (2018) Tensile, Impact, and Thermal Properties of an Epoxynovolac Matrix Composites with Cuban Henequen Fibers. Mech Compos Mater 54(3):341–348

    Article  Google Scholar 

  128. Pang Y, Drzal LT (2004) Interfacial and thermal properties of henequen/unsaturated polyester and henequen/phenolic biocomposites. 29:278

  129. Pang Y, Yoon SB, Seo JM, Han SO, Cho D (2005) Effect of electron beam irradiation on the interfacial and thermal properties of henequen/phenolic biocomposites. J Adhes Interface 6(4):12–17

  130. Cho D, Yoon SB, Drzal T (2009) Cellulose-based natural fiber topography and the interfacial shear strength of henequen/unsaturated polyester composites: influence of water and alkali treatments. Compos Interfaces 16(7–9):769–779

    Article  Google Scholar 

  131. Yasin P, Ramana MV, Vamshi CK, Pradeep K (2019) A study of continuous Henequen/Epoxy composites. Mater Today Proc 18:3798–3811

    Article  Google Scholar 

  132. Amroune S, Bezazi A, Dufresne A, Scarpa F, Imad A (2021) Investigation of the date palm fiber for green composites reinforcement: thermophysical and mechanical properties of the fiber. J Nat Fibers 18(5):717–734

    Article  Google Scholar 

  133. Taha I, Steuernagel L, Ziegmann G (2007) Optimization of the alkali treatment process of date palm fibers for polymeric composites. Compos Interfaces 14(7–9):669–684

    Article  Google Scholar 

  134. AlMaadeed MA, Kahraman R, Khanam PN, Al-Maadeed S (2013) Characterization of untreated and treated male and female date palm leaves. Mater Des 43:526–531

    Article  Google Scholar 

  135. Mahdi E, Ochoa DRH, Vaziri A, Dean A, Kucukvar M (2021) Khalasa date palm leaf fiber is a potential reinforcement for polymeric composite materials. Compos Struct 265:113501

    Article  Google Scholar 

  136. Alothman OY, Jawaid M, Senthilkumar K, Chandrasekar M, Alshammari BA, Fouad H, Siengchin S (2020) Thermal characterization of date palm/epoxy composites with fillers from different parts of the tree. J Market Res 9(6):15537–15546

    Google Scholar 

  137. Djoudi T, Hecini M, Scida D, Djebloun Y, Djemai H (2021) Physico-mechanical characterization of composite materials based on date palm tree fibers. J Nat Fibers 18(6):789–802

    Article  Google Scholar 

  138. Gheith MH, Aziz MA, Ghori W, Saba N, Asim M, Jawaid M, Alothman OY (2019) Flexural, thermal, and dynamic mechanical properties of date palm fibers reinforced epoxy composites. J Market Res 8(1):853–860

    Google Scholar 

  139. Asim M, Jawaid M, Fouad H, Alothman OY (2021) Effect of surface modified date palm fiber loading on mechanical, thermal properties of date palm reinforced phenolic composites. Compos Struct 267:113913

    Article  Google Scholar 

  140. Tomczak F, Satyanarayana KG, Sydenstricker THD (2007) Studies on lignocellulosic fibers of Brazil: Part III–Morphology and properties of Brazilian curauá fibers. Compos A Appl Sci Manuf 38(10):2227–2236

    Article  Google Scholar 

  141. De Rosa IM, Santulli C, Sarasini F (2010) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium Tenax leaf fibers. Mater Des (1980–2015) 31(5):2397–2405

  142. Chouhan N, Hait M, Roymahapatra G, Huang M, Xu BB, Guo Z (2022) Complexation of Antibiotics with Transition Metal Ions: A Review. ES Food Agrofor 8:1–11

    Google Scholar 

  143. Das G, Ghosh A, Sen AK (2022) Studies on the Antidiarrheal Activity and Antimicrobial Activity of Aegle Marmelos Dried Fruit Pulp: Validating its Traditional Usage. ES Food Agrofor 7:48–53

    Google Scholar 

  144. Zou W, Huang J, Su J, Zeng W, Liang Y, Chen R, Guo Z (2021) Review on Modification of Poly (lactic acid) in Physical and Mechanical Properties. ES Food Agrofor 6:3–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.K., L.P., P.P.B., A.Y.—Conceptualization, methodology, visualization, investigation, data curation, writing (original draft), writing (review and editing).

Corresponding authors

Correspondence to Lalta Prasad or Anshul Yadav.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Prasad, L., Bijlwan, P.P. et al. Thermogravimetric analysis of lignocellulosic leaf-based fiber-reinforced thermosets polymer composites: an overview. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03332-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03332-0

Keywords

Navigation